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Silicon-germanium heterojunction bipolar transistors are excellent devices for qubit readout

Inherent device physics results in improved performance at cryogenic temperatures

Basic modeling techniques have enabled numerous circuits

Simple circuits at base temperature have been effective for readout

Increased understanding of device physics in foundry processes can enable circuit improvements
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Silicon-Germanium (SiGe) Heterojuction
Bipolar Transistors (HBTs)



4 Diodes to SiGe HBTs in 120 Seconds

Diodes are diffusion current dominated

Symmetrically doped diodes will have nearly equal
electron and hole current

Uneven doping will change the current ratios

Add another n-type area to pull off electrons and
make the p-type area very short

The bipolar junction transistor is created
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5 Silicon-Germanium Heterojunction Bipolar Transistors

The BJT reliance on much higher doping in the emitter than in the base adds constraints
Resistive base terminal adds noise and slows the transistor

Higher doping reduces this resistance but lowers current gain

Germanium content in the base lowers the band gap
Electron current before hole (higher current gain)

Electric field in base (higher speed)

Increasing both Ge content and base doping keeps
current gain high while reducing the base resistance

Consequently, SiGe HBTs are faster and slightly less
noisy than Si BJTs
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6 Modern SiGe HBT Technology •
450 • • • I

Graded germanium base profile
Tuning knob for device parameters

[3 , fT , VA , NF

Compatible with standard Si fabs
Integration with CMOS
SiGe BiCMOS available from 0.35 pm down to 90 nm

Enables system-on-a-chip applications
Mixed-signal capability

Rapid scaling Et performance trends
4th generation out now

500 GHz fivw devices in silicon
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7 Conventional Performance Niches
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A. J. Joseph et al., vol. 93, no. 9. Proc. of the IEEE, 2005, pp. 1539-1558.

Technology Comparison

MOS HBT

Speed ✓

Noise ✓

Power Consumption ✓

Transconductance ✓

Input Impedance ✓

Low-volume cost per performance favors HBT

HBT outperforms CMOS in speed and noise

lf it can be done in silicon,

it will be done in silicon.

lf it can be done in CMOS,

it will be done in CMOS.

•



8 SiGe HBTs at Cryogenic Temperatures

The physical mechanisms of the band-gap engineering are enhanced at cryogenic temperatures

The most important device metrics improve: current gain, transconductance, speed, noise, etc.

Many parameters saturate below 50 K making for a very predictable device with excellent performance

Device current gain increasing down to 5.84 K Transfer characteristics saturating below 50 K

_ SiGe HBT
AE=1.4x4.4µm2

: VCB=0.01,

0.94 0.98 1.02
Base—Emitter Voltage (V)

1.06

•

A. J. Joseph et al., "Operation of SiGe heterojunction bipolar transistors in the liquid-helium temperature regime," IEEE Electron Device Lett., vol. 16, pp. 268-270, June, 1995.



9 Silicon Speed Records are Held by SiGe HBTs, the Highest at Cryo

Room Temperature BiCMOS Record

537 GHz fmAx, 305 GHz fT

D. Manger et al., "Integration of SiGe HBT with fT=305 GHz, fmax=537 GHz in
130nm and 90nm CMOS," 2018 IEEE BiCMOS and Compound Semiconductor
Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, 2018,
pp. 76-79.

Cryogenic Record

800 GHz fmAx, 500 GHz fT
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SiGe HBT Metrics at Room Temperature, 4.3 K, and 70 mK

300 K 4 4.3 K
Peak current gain is increased

Transconductance is increased

4.3 K 4 70 mK
Increase of VBE of about 10 mV

First-order performance unchanged
down to 70 mK

Measurement and modeling at
4.3 K is applicable to 70 mK
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Cryogenic Amplification for
Semiconducting Qubits

■



12 Silicon Quantum Computing Readout •
Silicon-based quantum computing readout has a number of challenges

Single-electron transistors (SETs) are highly sensitive to the environment and have low output signals in the 100 pA range

Dry dilution refrigerators have low thermal budgets and terrible electromagnetic interference problems

Cables in and out of fridge are long and highly resistive and capacitive

SiGe HBTs are viable amplifiers for silicon quantum computing readout

Multiple analog amplifiers have been designed and two topologies are in common use today

SiGe HBTs can provide the best gain vs. power trade-off of any solid-state solution at base temperature

Designs to date have used COTS discrete npn transistors, NESG3031 (out of production)

s
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Keep SET Potentials Constant

Keep Temperature Low

Detect Small Signals

Mitigate Fridge Noise
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Low Input Impedance
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1 3 Modeling Approach: Single Exponential Fits, Early Voltage, and Shot Noise

Based on single exponential analytical fits
implemented with Verilog-A

1B = ebOVBE+bl 1 lc 
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ecOVBE+c1

Not physically meaningful but effective
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Output conductance is low
Often negligible because lack of pnp often means
resistive loading

50
Output Curves of NESG3031M05 SiGe HBTs at 4.3 K
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Noise is based on base and collector shot noise only

Cadence Spectre natively linearizes models for AC and noise analysis



1 4 Design Flow Proof of Concept: Current Amplifier

1

The current amplifier validated
the design flow

Acceptable model to circuit
correlation

Performance
High gain and low noise

Higher than desired power

Room temperature TIA required
to mitigate capacitance of
cabling
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15 Use of SiGe HBTs for Silicon Quantum Computing Readout

Simple common-emitter amplifiers provide exceptional power to gain tradeoff at base temperature

The DC Coupled HBT effectively current biased the SET and provides the best SNR up to 100s of kHz

The AC Coupled HBT largely preserves the SET voltage bias and can be operated in the 1 MHz range

Both circuits easily integrate with quantum devices on PCB

Matthew Curry will present on the experimental results of these amplifiers with quantum devices

DC Coupled HBT Amplifier AC Coupled HBT Amplifier
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■

M. J. Curry et al, App. Phys. Lett. 106, 203505 (2015)
Also, APS March Meeting 2015-2018

APS March Meeting 2015-2017



1 6 A Wide Variety of Circuits are Available

Specification
AC HBT
(3 i.JA Ic) Amplifier 

Current Two Stage
AC HBT

arrier
Bandwidth

Input Resistance

Input
Referred Nois

70 A/A*

20 Hz - 1 MHz

100 kO

1.2 PW*

Measu red
< 40 fA/s/Hz

100k V/A 800 A/A 4000 A/A 5400 A/A

DC - 1 MHz 800 Hz - 500 kHz 20 kHz 20 Hz - 1 MHz

30 kO 10 kO 10 MO 100 kO

91 pW

Simulated
< 40 fA/s/Hz

40 pW

Simulated
< 100 fA/s/Hz

800 nW

Measu red
< 30 fA/s/Hz

6 pW

Simulated
< 100 fA/s/Hz

All discrete devices on PCB

*tunable gain vs. power tradeoff z 57 (A/A)/pW
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Device and Technology Research for
Future Circuit Improvements

Work by John Cressler's team at Georgia Tech
funded by Sandia Labs' Laboratory Directed
Research Et Development program and Academic
Alliance program

•



18 Process Investigation

The path to better circuits is through better devices and device understanding

A number of commercial processes are showing promise for future development

Global Foundries 9HP, 90 nm BiCMOS, exhibits similar behavior to the discrete devices in use today
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19 Greater Understanding of Collector Current Transport

Standard current modeling is no longer sufficient below 50 K

Tunneling current becomes dominant transport mechanism

Qualitative Transport Mechanisms
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20 Thanks for Listening! •

Thanks to all those who have provided insight into SETs and been willing to take on amplifier testing!

SNL Collaborators: Matthew Curry, Andy Mounce, Lisa Tracy, Michael Lilly, Dwight Luhman, Steve Carr,
and many others

Georgia Tech Team: Hanbin Ying, Jeffrey W. Teng, Anup Omprakash, Brian Wier, Uppili Raghunathan,
Nelson Lourenco, Jason Dark, Luwei Ge, Dragomir Davidovic, Martin P. Mourigal, and John D. Cressler


