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Porous Tantalum as a Stochastic Material

Shock in structured materials (e.g., additively-
manufactured) is of increasing interest.

Stochastastic materials may present simpler test cases
for multidimensional or reduce-order models

Porous Ta is appealing:

• Shock behavior of solid Ta extensively studied

• Inexpensive, reproducible spray-forming

Successive coatings from
molten-particle impact
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Experimental setup at APS 11D-E for x-ray tomography
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Lamellae, oxides and pores are sources of heterogeneity
for shock response
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Optics Geometry
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Up to 13 probes per sample:

• Ascentta "triangle" probes

• 0° polished bare fiber

• Dual fiber send/receive configuration

Three interferometer types:

• Photonic Doppler Velocimetry (PDV)

• Photonic Displacement Interferometer (PDI)

• VISAR

Up to 3 samples per shot:
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Symmetric Sapphire-Sapphire Impact
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3 other control shots produced

comparable results

PDV, PDI, and VISAR (not shown) give same mean

plateau velocity within -1 m/s (standard deviation)

6



Forward Ballistic Impact of Porous Tantalum
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Forward Ballistic Impact of Porous Tantalum
292 m/s impact

Superposition for two
samples on the same
shot.
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Forward-Ballistic Impact of Porous Tantalum:
Multiple impact velocities

Reproducible features:

rounding of stress wave

Min. of 5-10% s.d.

depending on ROI
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Spatial Velocity Distribution is approximately Gaussian
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Effect of Finite Probe Size

Probe —317
diameter

Spats —100 pm diameter

Monte Carlo simulations assuming:
• Response uniform within a splat
• Gaussian distr. of splat responses
• Uniform sampling by probe
• Avg/s.d. of N probes

—5-10 probes convergence to mean

—317 pm probes underestimates distribution
width by —1/0.3 = 3.3x
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Distributions with Finite Probe Size Correction
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Conclusions

Multipoint velocimetry control experiments:

• Up to 26 measurements per shot demonstrated
• PDI, PDV and VISAR give same mean response within probe-to-probe

variation of —1 m/s

Porous Tantalum has stochastic structure and stochastic (Gaussian) shock
response during plate impact loading:

• Spatial velocity distribution is —Gaussian commensurate with stochastic
particle deposition

• Velocity distribution standard deviation was —5-10% of mean
• Represents lower bound to variation, owing to optic dimensions
• Consistent rounding of wave stress profile indicative of dissipation (e.g.,

pore collapse)
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