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» | Motivation

* Research in biological fields has great potential to do good as well as harm.

*Unlike other fields with potential for Dual-Use Research Concerns (DURC) (e.g., nuclear

engineering) this line is not as well understood.
* Journals and grants now rely on manual content review to identify material that could be misused.

* The community would benefit from automated recommendation methods to expedite the review
process.
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4+ | Data

*UIUC has provided 272 PubMed abstracts manually labeled by a Subject Matter Expert (SME)
according to the following levels of DURC:

* Not DURC
* Potential DURC
* DURC

°[Labels are binarized into:
* Not DURC

* At least potentially DURC

*Data format example:

Label Text
y0 (Title-Abstract from paper
vyl (Title-Abstract from paper
yl (Title-Abstract from paper
y0 (Title-Abstract from paper

W N = O
w N o

*Also provided: list of DURC-related keywords used by SME to identify DURC publications.




s | Data preprocessing

*We preprocess the titles and abstracts accordingly:

* Abstracts and titles are all set to lower case.

Abstracts and titles are tokenized.

Stop words are removed.

Words with document frequency of >0.7 are removed.

* Words that appear in fewer than 1 document are removed.

*We compare this baseline to two additional preprocessing methods:
1. Remove all tokens that are not keywords identified by a SME.

2. Remove all tokens that are keywords identified by a SME.

*These methods are used as control to identify which tokens are most significant to the classifier’s
decision boundary.




¢ | Representation of data

*For analysis, the Pubmed articles’ titles and abstracts are converted into a numerical vector
representing normalized word occurrences.

*Each entry in the vector is a word’s term-frequency inverse document frequency (TFIDF)
*TFIDF highlights words that are most signature to a given document.

tfidf(t, d, D) = tf(t, d) * idf(t, D)
*Where:

¢ tf corresponds to the frequency that term ¢appears in document d.

* idf offsets the term frequency according to how many documents in the corpus D contain the term ¢



7 | Methods

*For classification, we inspect several possible classifiers
* Linear SVC: C=0.5

¢ K-Nearest Neighbors (IKNN): K=15
* Gaussian Naive Bayes

* Random Forest (RF): n_estimators=100, max_depth=2

* Additionally, we also inspect the performance of these classifiers 2D representations of the data
using:
* PCA
* SVD
* Spectral Embedding with RBF kernel
* TSNE




8

Performance Measurement

*Classifier performance is averaged over stratified 5-fold cross validation.
*Performance 1s summarized using a Confusion Matrix.

*We wish to find as many DURC papers as possible, constrained by also reducing the number of false
positives a manual reviewer would have to read.

*Ideally, each class accuracy should be maximized.

*Pragmatically, we favor DURC class accuracy over (and empirically, at the expense of) non-DURC
class accuracy:.

*DURC labelled data were weighed more heavily than non-DURC for Linear SVC and Random
Forest to emphasize recall.
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10 | Classification Performance

on Full-Dimensionality Data
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PCA Dimensionality Reduction
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12 | Classification Performance on PCA-Reduced Data
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13 | SVD Dimensionality Reduction

Full-Text

Keywords Removed

Only Keywords

o HotDURC o NotDURC o NotDURC
& Potential DURC & Potential DURC L] ¢ o Patential DURC
i i .
0%
. '
’ ' e ' ' '
’ . @ ¢ o ]
" .h 0 ja! ! e
] e, * L | i "
' no ’ P %N * . H ) i
[ ]
% ) n l ) W .0 o
V! ! “ ' , LT ! LI .‘ , >
) ) e e 0 g
¢ a " .ﬁ. 0 ' ™ . “, ! i [
| . ' 0 .
. ; u . I " " e ’ ]
(] ' i L] ' . .'. ’, he L] [}
» . * N "o, ¢ ¢ 0 "l (a % U B I Y T
', ' i 9 ", . 1 ' f’\' e, T .
L LY ' T X O TR A L I 0] e ' \ .
i..h. ] ﬁ‘ O o." oo ' v 0.:.".0} L) b, ’ Yot ey, 0 v
’ ' )
209 [ [ N e '\ s 00 wii » .
18 ' L. LT . o0 ' * ’
. 0‘0‘.0‘ Ay U " . ‘o:"""}.{'. i o " ’ ., . U
‘e LA b ¢ U 0 I RUIRR ' 2 . [
. ey, da g ¢ AR AT ’ " . ‘ ' J
] ' ¢ (] * "
¢ ""\{.‘v ) [ ! "0'?,0. o ! ‘ ! b, ¢
I AL A Y ' ", ] ' ’
[ I " ] ’
‘" o :H" UL .o: .ro' i
N h R ' ) . LI S 4 v '
v R, ' 0@ g Y . _ . .
' 0wyt A RNCEE !
* [ LI ] o
. ' . ' *
.
) 03 i [ .
05 0 uls 0 05 03 P P s alo ol o s 030 03 00 0 00 o Py P P 15 05 0 03

5



14 | Classification Performance

on SVD-Reduced Data
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Spectral Embedding Dimensionality Reduction
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16 | Classification Performance on Spectral Embedding-Reduced Data
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17 I TSNE Dimensionality Reduction
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18 | Classification Performance on TSNE-Reduced Data
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Analysis




20 I Principal Conclusions

*Both Linear SVC and Random Forest were able to achieve ~90% detection rates of DURC in our
data set.

*KKNN performed best on full dimensionality data, but suffered when only using keywords.

*Given that DURC and non-DURC papers were not completely separable when projected, the
experiments that had the highest detection rate tended to have a higher false-positive rate.

*Dimensionality reduction improved the performance of Random Forest considerably, significantly
reducing the rate of false positives.

*After dimensionality reduction, false positive rates were less than 30%, significantly down-selecting
the number of documents required for manual curation.

*Contextual words (Non-keywords) were critical for classification performance.




21 | Future Work

*Our work was done on a dataset of limited size. Thus, additional work will be needed to ensure the
performance generalizes to larger and more varied datasets.

*More work must be done to better explain what factors contributed to the ease of classification in
our dataset.
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Provided Keywords
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