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2 Motivation

• Research in biological fields has great potential to do good as well as harm.

•Unlike other fields with potential for Dual-Use Research Concerns (DURC) (e.g., nuclear
engineering) this line is not as well understood.

• Journals and grants now rely on manual content review to identify material that could be misused.

• The community would benefit from automated recommendation methods to expedite the review
process.
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4 Data

•UIUC has provided 272 PubMed abstracts manually labeled by a Subject Matter Expert (SME)
according to the following levels of DURC:
• Not DURC

• Potential DURC

• DURC

•Labels are binarized into:
• Not DURC

• At least potentially DURC

•Data format example:

Label

0 y0

1 yl

2 yl

3 y0

• • •

Text

(Title-Abstract from paper 0)...

(Title-Abstract from paper 1)...

(Title-Abstract from paper 2)...

(Title-Abstract from paper 3)...

•Also provided: list of DURC-related keywords used by SME to identify DURC publications.



5 Data preprocessing

•We preprocess the titles and abstracts accordingly:
• Abstracts and titles are all set to lower case.

• Abstracts and titles are tokenized.

• Stop words are removed.

• Words with document frequency of >0.7 are removed.

• Words that appear in fewer than 1 document are removed.

•We compare this baseline to two additional preprocessing methods:
1. Remove all tokens that are not keywords identified by a SME.

2. Remove all tokens that are keywords identified by a SME.

•These methods are used as control to identify which tokens are most significant to the classifier's
decision boundary.

■



6 Representation of data

•For analysis, the Pubmed articles' titles and abstracts are converted into a numerical vector
representing normalized word occurrences.

•Each entry in the vector is a word's term-frequency inverse document frequency (TFID1-4)

•TFIDF highlights words that are most signature to a given document.

tfidf(t, d, D) = tf(t, d) * idf(t, D)
•Where:
• tf corresponds to the frequency that term t appears in document d

• idf offsets the term frequency according to how many documents in the corpus D contain the term t.

•



7 Methods

•For classification, we inspect several possible classifiers
• Linear SVC: C=0.5

• K-Nearest Neighbors (KNN): K=15

• Gaussian Naïve Bayes

• Random Forest (RF): n_estimators=100, max_depth=2

Additionally, we also inspect the performance of these classifiers 2D representations of the data
using:

• PCA

• SVD

• Spectral Embedding with RBF kernel

• TSNE

•



8 I Performance Measurement

•Classifier performance is averaged over stratified 5-fold cross validation.

•Performance is summarized using a Confusion Matrix.

•We wish to find as many DURC papers as possible, constrained by also reducing the number of false
positives a manual reviewer would have to read.

•Ideally, each class accuracy should be maximized.

•Pragmatically, we favor DURC class accuracy over (and empirically, at the expense of) non-DURC
class accuracy.

•DURC labelled data were weighed more heavily than non-DURC for Linear SVC and Random
Forest to emphasize recall.

Ideal Acceptable Poor Useless

Actual
Non-DURC

Actual
DURC

Predicted
Non-DURC

Predicted
DURC

Actual
Non-DURC

Actual
DURC

Predicted
Non-DURC

Predicted
DURC

Actual
Non-DURC

Actual
DURC

Predicted
Non-DURC

Predicted
DURC

Actual
Non-DURC

Actual
DURC

Predicted
Non-DURC

Predicted
DURC





10 I Classification Performance on Full-Dimensionality Data
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11 PCA Dimensionality Reduction

Full-Text Keywords Removed Only Keywords
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12 I Classification Performance on PCA-Reduced Data

Full-Text

Keywords Removed

Only Keywords
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1 3 SVD Dimensionality Reduction

Full-Text Keywords Removed Only Keywords

0.4

frk4DLIRC

• Potential DEC •

• •

•

•
0.4

0.3
4 

•

is• 1, #8•
el

•
,

•

0.3

o

0.2 0.2

,8

0.1 •
•

of

•
• • •

0.1

• # •
0

0.0 5 
• 

50:76;." 
8

• 0.0

-0.1

-0.2

5.18P% 81 • 48# 8 8 I

(y.‘ sit...I I- S. • 5•••
la% sa lif 5

• •:• 
Virs • .,••,-j• s • es II

r#
•
•

•
I

•

011

•

•

-0.1

-0.2

• 0 •
• to

•o • e

•

-0.3 • -0.3

ahs 0.1d ais aSO aSs 0.30 aSs 0#0

Not DURC

Potential DL1.1:

•
•

80

9

•

• ,
•

•
•

•

8 6

••
•

•

0 •

s'
•

• •

I

Oas 0.i0 ais aho [Lis 0.30 kis 0.140

0.6

0.4

0.2

0.0

-0.2

-0.4

-06

8 6
0

•

• •

, •

•
•

0 •

• NotD211C

• Potential MEC

et • • •
• # • j I I I •• 6

• sir • 64
•

• •
ski, 8 ale

#
, • o$ • • '

I/ °S, 88 •8

80 •
••• fo, so el 8 • 86 • $0

fop AI 
• 

•

•

II

l• ,

o 6 •
0 •

•

• • •

• • • • •
0

4°
e 

•
•

•

•

•

•
• •

6 • •
• 4 0 ,

• $ • •

•

•

•

•

e
s

•

01.0 0.14 06
01.7 01.8



14 I Classification Performance on SVD-Reduced Data

Linear SVC
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15 Spectral Embedding Dimensionality Reduction •

Full-Text Keywords Removed Only Keywords
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1 6 Classification Performance on Spectral Embedding-Reduced Data

Linear SVC
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1 7 TSNE Dimensionality Reduction

Full-Text Keywords Removed Only Keywords
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18 I Classification Performance on TSNE-Reduced Data

Linear SVC
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20 Principal Conclusions

•Both Linear SVC and Random Forest were able to achieve —90% detection rates of DURC in our
data set.

•KNN performed best on full dimensionality data, but suffered when only using keywords.

•Given that DURC and non-DURC papers were not completely separable when projected, the
experiments that had the highest detection rate tended to have a higher false-positive rate.

*Dimensionality reduction improved the performance of Random Forest considerably, significantly
reducing the rate of false positives.

•After dimensionality reduction, false positive rates were less than 30%, significantly down-selecting
the number of documents required for manual curation.

•Contextual words (Non-keywords) were critical for classification performance.



21 Future Work

•Our work was done on a dataset of limited size. Thus, additional work will be needed to ensure the
performance generalizes to larger and more varied datasets.

•More work must be done to better explain what factors contributed to the ease of classification in
our dataset.
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23 Provided Keywords ■

highly optimal refine efficient cytomodulin antibiotic resistance
specificity amplify diversity stability modulate replace
optimize robust introduce new virion fuse

wide robustness novel biosynthesize titer virus

better efficiency toxicity change build potency

irreversible functionality virulence factor maximize lethal expand
cytopathogenicity catalytic activity resistance genetically recombinant synthetic
screen deliver potentiation lethality reversible mutate

mosaic combinatorial genetic exchange encapsulate vary

translocate potentiate cytotoxic engineer pathogenesis enzymatic activity

strategic superior biological activity broad reconstruct modify

pathogenicity improve enhance secrete pure specific

cytotoxicity effective recombine edit bind construct

increase bioagent exogenous modular coexpress heterologous

functional multivalent host specificity design modularity versatility

different solubility toxic swap toxin infectivity

immunogenicity more virulent diversify traceless maximal

regulate induce efficacy synthesize endocytose rapid
pathogen elevated virulence resilient cellular activity purer

versatile selectivity chimeric alter conjugate higher

combine switch upregulate bacteria redesign accelerate

penetrate elevate stable selective potent broaden


