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» | Motivation

* Research in biological fields has great potential to do good as well as harm.

* Unlike other fields with potential for Dual-Use Research Concerns (DURC) (e.g:, nuclear
engineering) the line that separates good and harm is not as well-defined.

* Journals and grants now rely on manual content review to identify material that could be misused.

* The community would benefit from automated recommendation methods to expedite the review
process.

*Machine Learning (ML) models may be able to help automate the discovery of potentially DURC
Manuscripts.
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4+ | Data

*UIUC has provided 272 PubMed abstracts manually labeled by a Subject Matter Expert (SME)
according to the following levels of DURC:

* Not DURC
* Potential DURC
* DURC

°[Labels are binarized into:
* Not DURC

* At least potentially DURC

*Data format example:

Label Text
y0 (Title-Abstract from paper
vyl (Title-Abstract from paper
yl (Title-Abstract from paper
y0 (Title-Abstract from paper

W N = O
w N o

*Also provided: list of DURC-related keywords used by SME to identify DURC publications.




s | Representation of data

*For analysis, the PubMed articles’ titles and abstracts are converted into a numerical vector
representing normalized word occurrences.

*Each entry in the vector is a word’s term-frequency inverse document frequency (TFIDF)
*TFIDF highlights words that are most signature to a given document.

thidf(t, d, D) = tf(t, d) * idf(t, D)
*Where:

¢ tf corresponds to the frequency that term ¢appears in document d.

¢ idf offsets the term frequency according to how many documents in the corpus D contain the term ¢

Robertson, S.E. and Spirck Jones, K. 1976. Relevance weighting of search terms. J. Amer. Soc. Inf. Sci. 27, 3, 129-146.




¢ I Data preprocessing

*We preprocess the titles and abstracts accordingly:

* Abstracts and titles are all set to lower case.
* Abstracts and titles are tokenized.
* Stop words are removed.

* Words with document frequency of >0.7 are removed.

*We compare this baseline to two additional preprocessing methods:
1. Remove all tokens that are not keywords identified by a SME.
2. Remove all tokens that are keywords identified by a SME.

*These methods are used as control to identify which tokens are most significant to the classifier’s
decision boundary.




Classifiers




s | Classifiers — Linear Support Vector Classifier (Linear SVC)

*Identity a line in the data’s space that optimally
separates the labels.

*For higher dimensions of data, it uses a
hyperplane.

*Resistant to overfitting

*Parameters we used:
e C=0.5
* Non DURC weight: 0.25
* Potential DURC weight: 0.75




9 | Classifiers — K-Nearest Neighbors (KNN)

A point’s label is determined by majority label
of its K-nearest neighbors.

*Doesn’t need to draw a decision boundary.
*Performs best when data are not well mixed.

*Parameters we used:
e K=15




10 | Classifiers — Naive Bayes

*Train a probability model for label prediction

using data as “evidence.”

*Assumes that different features are independent
(a naive assumption).

*Also doesn’t need to draw an explicit decision
boundary.




11 | Classifiers — Random Forest (RF)

*Use many, small decision trees (a forest) that are
all trained on different parts of the data.

*Majority vote for determining new datapoint
labels

*Capable of more complex decision boundaries
than Linear SVC, but also not susceptible to
uncontrolled overfitting,

*Can struggle with class imbalance.

*Parameters we used:

* n estimators=100

* max_depth=2

* Non-DURC weight: 0.25

* Potential DURC weight: 0.75




Dimensionality Reduction




13 I Dimensionality Reduction — Spectral Embedding

3D

'*

2D

*Allows us to map high dimensional data into a
2D space.

*Preserves local distances and is nonlinear.

*May yield better classification performance
while being more computationally performant.




Performance / Validation
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Performance Measurement

*Classifier performance is averaged over stratified 5-fold cross validation.
*Performance 1s summarized using a Confusion Matrix.

*We wish to find as many DURC papers as possible, constrained by also reducing the number of false
positives a manual reviewer would have to read.

*Ideally, each class accuracy should be maximized.

*Pragmatically, we favor DURC class accuracy over (and empirically, at the expense of) non-DURC
class accuracy:.

*DURC labelled data were weighed more heavily than non-DURC for Linear SVC and Random
Forest to emphasize recall.
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17 | Classification Performance

on Full-Dimensionality Data
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Spectral Embedding Dimensionality Reduction

Full-Text Keywords Removed Only Keywords
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19 | Classification Performance on Spectral Embedding-Reduced Data

Linear SVC KNN Naive Bayes
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21 | Principal Conclusions

*Both Linear SVC and Random Forest were able to achieve ~90% detection rates of DURC in our
data set.

*KNN performed best on full dimensionality data, but suffered when only using keywords.

*Naive Bayes performed worse than the other classifiers, and favored the more common class (non-
DURC). It may be that its naive assumption does not hold on this data.

*Given that DURC and non-DURC papers were not completely separable when projected, the
experiments that had the highest detection rate tended to have a higher false-positive rate.

*Dimensionality reduction improved the performance of Random Forest considerably, significantly
reducing the rate of false positives.

*After dimensionality reduction, false positive rates were less than 30%, significantly down-selecting
the number of documents required for manual curation.

*Contextual words (Non-keywords) were critical for classification performance.



22 | Future Work

*Our work was done on a dataset of limited size. Thus, additional work will be needed to ensure the
performance generalizes to larger and more varied datasets.

*More work must be done to better explain what factors contributed to the high performance of
classification in our dataset.
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PCA Dimensionality Reduction
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27 | Classification Performance on PCA-Reduced Data
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28 | SVD Dimensionality Reduction
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29 | Classification Performance

on SVD-Reduced Data
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30 I TSNE Dimensionality Reduction
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31 | Classification Performance on TSNE-Reduced Data

Linear SVC
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