
trafast Spectroscopic Studies of Vibrationa
Energy Transfer in Energetic Materia s
Neil C. Cole-Filipiakl, Michael Marquez2, Robert Knepper2, Robert Harmonl,
Deneille Wiese-Smithl Paul Schraderl, Mitchell Wood2, Krupa Ramaseshal
1Combustion Research Facility, Sandia National Labs, Livermore, CA 94551

2Sandia National Labs, Albuquerque, NM 87123

Introduction
Shock-induced detonation is a key property of EM that remains poorly understood. One mechanism is the "thermal" mechanism where shock excitation
of lattice phonon modes is hypothesized to transfer energy to intramolecular vibrations, resulting in the breaking of chemical bonds and reaction.1
However, this theory faces challenges based on energy differences (vibrations 3000 cm-1 vs. bond energies 30 000 cm-1) and expected energy
redistribution away from reactive coordinates.2 Previous experiments have examined molecular vibrational energy transfer3 and spectroscopy of EM
following a shock on picosecond (ps) timescales (e.g. ref. 4), though none of these techniques have directly investigated resonantly pumped phonon up-
conversion within bulk EM; information vital to establishing rigorous bottom-up understanding and theory.

Experimental Methods
Through combinations of plasma-generated supercontinuum infrared (BBIR; 2 20 p.m),
tunable near infrared (1.2-2.6 iim), tunable mid-infrared (3-7 iim) and terahertz (100
1000 µm) pulses in pump-probe spectroscopy, we can explore energy transfer processes on
a sub-ps time scale.

- NIR/BBIR temporal cross-correlation FWHM = 110 fs - MIR/BBIR temporal cross-correlation FWHM = ca. 500 fs
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Additional Capabilities
We can also produce ultrashort 262 nm and 195 nm
ultraviolet pulses for exciting electronic transitions in
materials or simulating irradiative aging. A small
vacuum chamber may be placed at the sample
position for studying gas-phase dynamics, such as the
primary photolysis5 of model EM systems (e.g.
nitromethane.).
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Cheat Sheet
1 eV = 8065 cm-1

1 kJ/mol = 83.6 cm-1

6 p.m = 1667 cm-1

1 THz = 33 cm-1
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First Results: RDX

Proposed Mechanismsl
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C-H overtone pumping (v = 2 <- v = 0) at 1.67 [im in a 5 p.m thick RDX sample shows a clear
feature at which is not present when probing the bare ZnSe substrate.

NIR Pump, RDX Sample on ZnSe NIR Pump, Bare ZnSe
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However, narrow band MIR pump-narrow
band MIR probe in the 6 p.m region (N-O
stretch) reveals a time-dependent interference
pattern due to inhomogeneous RDX sample.
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Ongoing and Ft.i.ure Work
• Improve MIR time resolution (non-colinear DFG, reduce temporal chirp of pulses)
• Improve EM homogeneity (new RDX and PETN samples)

• Reduce atmospheric contamination of BBIR and THz spectra
• Explore vibrational dynamics of nitromethane model system (see Theory below)

• Generate intense THz pulses (tilted pulse front in LiNb03) for direct phonon

pumping

• Directly pump "doorway" states with high-field THz pulses (NIR pumped organic

crystal)

Theoretical Support
Theoretical work performed in parallel is using DFT and MD simulations to elucidate
vibrational energy transfer pathways and lifetimes in EM; see talk S2.3 at 11 AM.
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Current capabilities include two phonon density of states for
down-scattering and up-scattering events, "pumping"
specific phonon modes, and incorporation of phonon-
phonon scattering cross sections.
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