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Abstract. Composition of computational science applications into both
ad hoc pipelines for analysis of collected or generated data and into
well-defined and repeatable workflows is becoming increasingly popular.
Meanwhile, dedicated high performance computing storage environments
are rapidly becoming more diverse, with both significant amounts of non-
volatile memory storage and mature parallel file systems available. At the
same time, computational science codes are being coupled to data anal-
ysis tools which are not filesystem-oriented. In this paper, we describe
how the FAODEL data management service can expose different avail-
able data storage options and mediate among them in both application-
and FAODEL-directed ways. These capabilities allow applications to ex-
ploit their knowledge of the different types of data they may exchange
during a workflow execution, and also provide FAODEL with mecha-
nisms to proactively tune data storage behavior when appropriate. We
describe the implementation of these capabilities in FAODEL and how
they are used by applications, and present preliminary performance re-
sults demonstrating the potential benefits of our approach.
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1 Introduction

Traditionally, I/O for data storage in high-performance computing applications
(especially computational science simulations) has almost always meant data
transfer from node DRAM to a parallel file system (PFS) such as Lustre or
GPFS. That traditional arrangement has been destabilized in a number of ways:

— Impedance mismatches, between the rates at which application data is gen-
erated (through simulation of physical phenomena or capture from exter-
nal sources) and the available bandwidth to stable storage provided by
datacenter-scale PF'S, have not abated.

— Available PFS solutions in many cases require application-specific configu-
ration and tuning, and continue to be a major source of resilience issues.

— Partly as a response to the above points, the storage hierarchy continues
to grow deeper and more complex. Potential layers include local and re-
mote memory (e.g., on package high bandwidth memory, DRAM, nonvolatile
memory (NVM), 3D-stacked DRAM); compute area Storage Class Memories
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such as burst buffers; parallel file systems; campaign storage; and archival
storage. Each level in the hierarchy has its own operational tradeoffs that
users must understand to efficiently leverage the underlying storage resources
in their application.

— The influence of data movement between host and accelerator memories, and
the desire to maintain zero-copy performance as that data must be moved
to stable storage, has increased the influence of APIs such as OpenACC [1]
and Kokkos [7].

Additionally, the abstractions commonly available to application developers
will not support the development and deployment of future exascale systems.
Several important trends in application design and deployment are highly de-
pendent on the availability of high-performance and semantically-flexible 1/0
services:

— Coupled Simulation Codes: Increasingly, important scientific simulations re-
quire multiple physical models to be evaluated simultaneously. To leverage
existing software, one way to combine these physical models is to run each
model independently and map the output of one physical model to the input
for another, and vice-versa. In this way, physical models that are captured
by independent executables exchange information about the state of the
simulated system as the simulation progresses. Achieving high performance
for these coupled simulation codes requires the availability of services that
facilitate the efficient exchange of data between multiple physical models.
Moreover, programmer efficiency is dependent on simple and robust mecha-
nisms for exchanging data between coupled simulation codes.

— Complex Workflows: Analysis of scientific simulation data commonly re-
quires processing by a sequence of several specialized analysis tools; the out-
put of one is the input for the next. The analysis tools that comprise these
workflows include: mesh generation and mesh refinement tools, precondi-
tioners, uncertainty quantification tools, simulation frameworks, solvers, and
visualization/analysis tools. Workflow management tools have typically ex-
changed data via a parallel filesystem. However, the PFS I/O bandwidth
limitations throttle severely the amount of work that can be done, while the
gap between compute speed and IO bandwidth continues to increase.

— Asynchronous Many-Task (AMT) Programming Models: AMT programming
models (e.g., Legion [4], Charm++ [14], and Uintah [10]) are designed to
allow compilers and the associated AMT runtimes to manage the complexi-
ties that arise due to performance variation and resource heterogeneity [18].
Moreover, the asynchronous nature of these models allows them to overcome
many of the performance costs that are borne by bulk synchronous paral-
lel (BSP) codes on extreme-scale systems. However, these characteristics of
AMT applications mean that predicting where a task may execute is not
straightforward. As a result, AMT runtimes have commonly relied on the
parallel filesystem to facilitate access to applications. Because of the costs
associated with parallel filesystem access, the performance of AMT-based



Mediating data center storage diversity in HPC applications with FAODEL 3

applications will be highly dependent on the ability of AMT runtimes to
leverage the entire storage hierarchy to provide AMT tasks with efficient
access to application variables.

— Beyond POSIX storage: Many widely used tools from the high-performance
data analytics (HPDA) space are oriented toward data storage without us-
ing traditional file system interfaces. Apache’s Spark [9] toolset is an exem-
plar of this approach. Spark relies on data access capabilities provided by
the non-POSIX APIs of sources like HDFS, Cassandra, and others which
may themselves rely on traditional filesystems to varying extents but do not
expose those interfaces to their users. As HPDA becomes a more popular
component of workflows, sharing data in a single data center with HPDA
tools means finding ways to coexist with their data management strategies.

— Resilience: The dominant approach to fault tolerance is checkpoint/restart.
Minimizing the performance impact of checkpoint/restart requires services
that provide efficient access to persistent storage resources. Moreover, while
checkpoints have traditionally been stored in parallel filesystems, techniques
for leveraging the entire storage hierarchy have begun to grow in importance,

cf. [16].

FAODEL [19] provides a set of data movement, storage, and management ser-
vices designed to address these challenges for next-generation HPC applications
and workflows. FAODEL’s advantages include:

— Programmer efficiency: presenting application programmers with a single
interface for data movement lowers the burden on application programmers,
reduces development costs, and lowers the risk of mistakes as programmers
attempt to master multiple interfaces to data movement services.

— Shared optimization: because FAODEL provides data movement services
through a unified interface, optimization and validation of shared compo-
nents can provide performance benefits in multiple data movement scenar-
i0s.

— Aggregated storage resources: because FAODEL provides a unified interface
to multiple levels of the storage hierarchy, it can dynamically make decisions
that allow it to avoid storage resources that are slow or have high energy
costs unless absolutely necessary (e.g., avoiding the parallel filesystem in
favor of node-local storage: DRAM, SSDs, NVRAM)

In this paper, we describe recent work which expands upon the last of these
advantages. Specifically, we describe how FAODEL allows applications to choose,
in a semantically appropriate manner, different persistent storage destinations
for different subsets of the data they produce or exchange with other applications.
These decisions are typically driven by a tradeoff space that encompasses the
available storage hardware, the locality properties of the data in question, and
whether other tools requiring specific data management are being used. This
kind of tradeoff space is already not uncommon: data center managers seek to
leverage existing power and cooling installations; same-platform deployment of
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both HPC and HPDA applications is becoming a priority; and as stated above
increasingly diverse storage hierarchies are now in wide deployment.

Our discussion is structured as follows. Section 2 briefly recaps the struc-
ture of FAODEL, with emphasis on the Kelpie service within which our work
described here is implemented. Section 3 describes our implementation of medi-
ated storage within Kelpie. Sections 4 and [5], discuss related work and conclude
our discussion, respectively.

2 FAODEL background

We briefly discuss relevant components of the FAODEL service in this section.
An overview of the relationships between the software components that comprise
FAODEL is shown in Fig. . A more detailed description of other FAODEL
components can be found in [20]. high-level components that are most relevant
to application developers in the remainder of this section.

Data Interface I/0O Modules
Modules (DIMs) (IOMs)

I I EE .. I I B .
Kelpie

Distributed, In-memory Lunasa

Key/Blob Service
Network

Opbox Memory
Management

Asynchronous
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Data Warehouse

Fig. 1: Software architecture overview of FAODEL.

2.1 Kelpie

Kelpie provides a key/blob abstraction to facilitate flexible data exchange be-
tween different executables (e.g., a simulation application and applications for
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visualization and analysis). A key is a programmer-defined text string that al-
lows the programmer to attach semantic significance to the associated data: a
blob. Although a key may attach programmer-cognizable meaning (and possibly
structural information) to a blob, Kelpie is entirely ignorant of any meaning
attached to keys or blobs.

Independent processes can exchange data in Kelpie by simply exchanging
keys. The semantics of the keys exchanged may be implicit, the processes involved
in the exchanges are unaware of the keys’ semantics, or explicit, the processes
involved in the exchange can extract meaning from the key. For example, a
programmer may construct a key by encoding metadata (e.g., the application
name, run number, iteration number, and variable name) that describes the
contents of the associated blob. Based on shared knowledge of the key’s encoding,
the recipient of a key can extract the metadata from the key to inform its
handling of the blob.

A key abstraction in Kelpie is represented by Pool objects. Each Pool object
represents a collection of resources (e.g., nodes) that support a key/blob store. A
Pool supports three basic operations: Publish, Want, and Need. Publish allows
the user to add a key/blob pair to the Pool. Want and Need allow the user to
request the blob associated with a key in the Pool. The distinction between the
two is that Want is a non-blocking operation and Need is a blocking operation.

2.2 I/0 Management (IOM) modules

One of the services provided by Kelpie is to allow users to request the transfer
of key/blob data to persistent storage. The interface between Kelpie and persis-
tent storage resources (e.g., NVRAM, parallel filesystem, databases) is managed
by I/O Management (IOM) modules. IOMs are built on high-level APIs (e.g.,
POSIX-compliant filesystems, HDF5, LevelDB) that provide access to the un-
derlying storage resources. Each Pool is associated with an IOM that provides
access to a particular storage resource interface (e.g., POSIX, HDF5).

FAODEL provides applications with services for transferring data to storage
resources throughout the system’s storage hierarchy. Each tier in the storage
hierarchy provides different access characteristics that are leveraged by different
use cases.

Various types of storage resources are accessible through Kelpie’s IOM mod-
ules:

— Distributed memory. Distributed memory provides access to the collective
DRAM (conventional DRAM devices and 3D-stacked DRAM devices) within
the application’s hardware allocation. Relative to other storage resources,
distributed memory provides low-latency, high-bandwidth storage. RDMA
transfers allow for efficient access to remote memory resources. Distributed
memory can be used by AMT runtimes to store and exchange application
variables and by coupled codes to exchange simulation data.

— Local persistent storage. Local persistent storage resources include SSDs
and NVRAM. Locality varies by system. In some cases, persistent storage
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may be available on each compute node, other systems may provide per-
chassis or per-rack persistent storage resources. Local persistent resources
can be leveraged as part of a checkpoint /restart solution (cf. [16]). Similarly,
because these devices typically provide much more storage capacity than
volatile memory (i.e., DRAM), they may also be used in support of in situ
analytics.

— Burst buffers. Recent HPC systems such as the Cray XC40 (deployed at
Los Alamos National Laboratory and the National Energy Research Sci-
entific Computing Center) and the IBM CORAL system provide fast non-
volatile storage colloquially referred to as burst buffers. These resources are
made available to compute nodes via vendor-specific libraries (e.g., Cray
DataWarp) and integrated via high-speed interconnects.

— Archival storage. In most systems, the principal archival storage resources
are provided by a parallel filesystem. Archival storage provides high-latency,
low-bandwidth access to high-capacity storage devices (e.g., hard disks).

3 Mediating storage using Kelpie object naming

Applications use the Kelpie interface to specify data they wish to store, re-
trieve, or exchange with other applications using the service. Like in other key-
value stores, applications can use Kelpie’s key structure to represent a names-
pace whose components have semantics appropriate to those applications and
to application-to-application interactions. In this way, the namespace can con-
vey important information about the data being exchanged and help developers
reason about the structure of the problem being addressed.

Our work here explores the use of the Kelpie namespace to reflect information
about how Kelpie handles data storage. A common conceptual distinction in
computational workflows is the notion of a control plane of metadata about the
current problem being solved and a data plane of result data from simulation
or analysis. The difference between these two is the amount of data and how
it is used. The control plane typically comprises larger numbers of smaller data
items which are more frequently used. This use case is well supported by storage
on solid-state media where reads and random access are advantaged. Volume
data comprising smaller numbers of larger data sets, conversely, is better suited
to bulk parallel file systems which are optimized for this case. An orthogonal
case which also can be addressed here is when certain data must be shared
with other applications that do not rely on file system interfaces, instead using
byte-addressable interfaces or relying on services such as NoSQL databases.

We describe in this section how we support the annotation of Kelpie object
namespaces with enough information for Kelpie to perform storage mediation.
In this way, determination of persistent storage destinations for data can be
based (to varying degree) on how that data is named. This provides multiple
benefits. Applications can structure the namespace to hint to Kelpie about the
relative “shape” of their data (signaling metadata vs. result data, for example). A
partition of the namespace can be dedicated to storage via non-POSIX methods,



Mediating data center storage diversity in HPC applications with FAODEL 7

allowing other workflow components to better understand which data is being
produced for which purposes. Also, our approach provides mechanisms for Kelpie
to either cooperate with application-structured namespaces (and the implied
storage hints), weigh those hints alongside internal considerations which need not
be exposed to applications, or restructure or even ignore application namespace
partitioning entirely.

3.1 Kelpie architectural considerations

Kelpie namespaces Kelpie implements different key indices; for the purposes
of our discussion we concern ourselves with its distributed hash table (DHT)
implementation (its details are similar to implementations in other KV stores).
Kelpie’s API provides either a one- or two-dimensional namespace. In practice,
this allows applications to easily separate 2-dimensional data (row vs. column)
for efficient distributed indexing. A Kelpie key can be anything serializable to
a string. For a one-dimensional Kelpie keyspace, a hierarchical tree-based name
structure (similar to that used in POSIX file systems) can be defined. This is
the type of namespace we consider in this work.

Kelpie persistent storage FAODEL (of which Kelpie is a component) is de-
signed as a memory-to-memory data management system, where running Kelpie
instances on separate nodes cooperate in DHTs by storing and providing data in
node memory. However, Kelpie also supports persistent storage of data to satisfy
resilience requirements or to relieve pressure on node memory allocations. This
persistent storage is managed by Kelpie’s I/O management (IOM) subsystem.
Each Kelpie instance has associated with it an IOM object which provides access
to a particular kind of persistent storage. IOM types include file system storage
supported by POSIX and HDF5 APIs, lightweight KV storage implemented in
LevelDB [11,12], and the Apache Cassandra column-oriented database [15,8].

3.2 Annotating the Kelpie namespace

Applications interact with Kelpie through a Pool object, issuing Want, Need,
and Publish operations for data objects located at given points in the namespace
managed by the Pool. We did not want to change this interaction for existing
Kelpie clients, so we added an aggregation object called Metapool. A Metapool
mimics the interface of a Pool, allowing clients to use it in the same manner.
Calls to this interface are delegated to a collection of Pools which are managed
by the Metapool (Fig.[2). A newly created Metapool cannot be used until it this
collection of Pools is provided.

Applications using a Metapool acquire Pool objects in the normal manner.
Each Pool object is registered with the Metapool along with a C++ function
closure or lambda whose function signature is bool fn( const std::string&
keystr ). Each call to the Metapool object’s Publish, Want, or Need methods
takes the key string (supplied as a required parameter) and searches through the
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Fig.2: A Publish operation makes data available at a particular location in the
Kelpie namespace. Using the Metapool object, the location is examined to deter-
mine which of the managed Pools should handle the request. Each Pool can be
configured with a different persistent storage strategy through its IOM compo-
nent, giving applications a means of selecting their preferred storage approach. In
a hypothetical example depicted here, the application makes large experimental
result data available at /results/exp2, and its Metapool has been configured to
delegate management for data under /results to a Pool whose persistent storage
method is the HDF5 library.

collection of Pools in order of their registration, calling the associated function
closure for each registered Pool. The first function closure called that returns
true indicates that its paired Pool is the one which should be delegated this
call from the Metapool object. This results in, for example, a Publish operation
being delegated to a particular Pool, which has an IOM subsystem targeted at
a particular kind of storage (HDF5 vs POSIX vs LevelDB, etc.).

This arrangement gives application developers a great deal of flexibility in
partitioning the namespace. Foe example, assume two Pools are in use, P1 and
P2. P1 is registered with the Metapool using a function closure that returns
true if the given key string has a prefix of /metadata’ and is configured to
store data persistently using LevelDB. In similar fashion, P2 is registered using a
function closure returning true for keys prefixed by /results, and is configured
to store data persistently using HDF5. Under this arrangement, the application
can store control plane information using the /metadata key prefix and exploit
lightweight storage for that data. This would of course depend as well on how
LevelDB was configured, and in this scenario configuring Level DB to use locally
accessible NVRAM would be appropriate. The end effect is that of a single
namespace available through and managed by the Metapool object, which after
configuration provides data persistence to different storage targets without any
additional intervention by the application.
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hdf5_dht = kelpie::Connect( "ref:/myapp/results" );
leveldb_dht = kelpie::Connect( bl
cassandra_dht = kelpie::Connect(

metapool.Manage ( hdf5_dht,

[1( const kelpie::Key& k ) {
if( k.K1l.size() < 9 ) return false;
if( k.Kl.substr( 0, 8 ) != "/results" ) return false;
return true;

}

metapool.Manage( leveldb_dht,

[1( const kelpie::Key& k ) {
if( k.Kl.size() < 10 ) return false;
if( k.K1.substr( 0, 9 ) != "/me ata" ) return false;
return true;

¥

metapool.Manage( cassandra_dht,

[1( const kelpie::Key& k ) {
if( k.K1l.size() < 11 ) return false;
if( k.Kl.substr( O, 10 ) != "/analytics" ) return false;
return true;

} s

Fig. 3: An example of configuring the Metapool object from client code. The ap-
plication supplies lambda functions to the Metapool object through the Manage
method, associating each with a particular Kelpie Pool.

for( int i = 0; i < 25; i++ ) {
kelpie: :Key k;

k.K1( "/metad /" + random_string( 10 ) );

lunasa: :DataObject 1ldo( 0, 256, lunasa::DataObject::AllocatorType::eager );
metapool.Publish( k, 1ldo );
}

for( int i = 0; i < 25; i++ ) {
kelpie: :Key k;

k.K1( "/results/" + random_string( 10 ) );
lunasa: :DataObject 1ldo( 0, 256 * le6, lunasa::DataObject::AllocatorType::eager );

metapool.Publish( k, 1do );
}

Fig.4: An example of using the Metapool object to publish data to Kelpie.
The application need not do anything except use the designated namespace
partition for each “kind” of data it intends to publish. The Metapool uses the
previously-supplied namespace partition functions to decide how to route the
Publish request.
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3.3 Service-initiated mediation

The Metapool implementation also provides Kelpie with the means of mediating
the configuration of Pools requested by an application. Since Kelpie manages
the collection of Pools, it can introduce changes to Metapool handing at run
time, in response to changing system or workflow conditions. Different strategies
that Kelpie can employ for such service-initiated mediation include:

— Weighting partition function responses. If the local Kelpie configuration has
enough information about local storage configuration, it might be appro-
priate to assign different weights to the filter functions registered with the
Metapool (as opposed to the nominal situation where the first true response
is considered 100% authoritative. This could prove useful in a case where a
Kelpie application configured for one data storage environment is ported to
a different environment.

— Changing IOM configuration at runtime. Different storage targets can be
assigned as a workflow execution evolves, and additional targets might be
added as a form of load balancing.

— Disregarding partition function responses entirely. At times it may make
sense to disregard the application’s suggested namespace partitioning en-
tirely and route data to a specific storage configuration. This also might be
useful in the case of porting a Kelpie application to a new storage environ-
ment.

4 Related Work

One of the first efforts to apply semantics to hierarchical namespaces was the
Intentional Naming System [2], which introduced the principle of naming what
applications are interested in, as opposed to where to find them (e.g.,locating
services by their internet hostnames). Active Names [21] was another early ef-
fort to couple resource location and naming semantics. Another example is the
Proactive Directory Service [5], which allowed applications to add user-defined
behavior and data management to partitions of a shared namespace. Our work
takes inspiration from these projects, giving applications tools to overlay seman-
tics associated with how data should be persistently stored onto the shared key
namespace offered by Faodel.

Many scientific simulations have the potential to generate vast quantities of
output data. Domain scientists rely on sophisticated analysis and visualization
to make sense of these data. Efficient use of these tools requires robust data
management services to find and access output datasets. Pavlo et al. [I7] compare
the use of MapReduce and Parallel Database Management Systems (DBMS) for
analyzing large volumes of data. For both of these approaches, data is stored
and exchanged through the filesystem. SENSEI [3] defines a generic data model
to facilitate the transfer of data between simulation and analysis tasks. Their
generic data model is intended to simplify the process combining a simulation
code with different kinds of analysis.
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HPC systems have recently experienced significant growth in the depth of
their storage hierarchy. SSDs, NVRAM, and 3D-stacked DRAM are all becoming
increasingly common. Because each level of the hierarchy represents a different
set of tradeoffs (and possibly also, different programming interfaces), applica-
tion developers face an increasingly complex set of choices when decided where
their data should reside. UNITY [13] provides a single interface for applications
to access all levels of storage hierarchy. Data Elevator [6] provides a transpar-
ent mechanism for moving data among different layers of the storage hierarchy.
Specifically, the authors describe and demonstrate their approach to moving data
between burst buffers and the parallel file system.

5 Conclusion

As modern extreme computing environments evolve, flexible solutions for man-
aging data exchanges between the applications they host will be necessary. In
this paper, we have described a set of modifications to the FAODEL data man-
agement framework which allow applications to mediate among available data
storage services. By partitioning the namespace provided by the Kelpie key-value
service within FAODEL, applications can indicate, based on their knowledge of
how data will be used, where subsets of the data they manage are best stored.
We anticipate that this type of capability will prove useful in data centers where
applications must make use of a set of common storage systems and services
instead of being able to supply their own custom configurations. We also expect
workflows which couple HPC and HPDA tasks to benefit from Kelpie’s ability
to persistently store data in formats suitable for off-the-shelf services without
requiring explicit application data transformation or reformatting. We are work-
ing to expand the functionality of Kelpie’s Metapool interface as well as to more
fully characterize its performance with production-scale workflows.
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