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, I Background

. Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable.

. Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over 1µs) ).

. Goal: Understanding of material models at extreme
conditions by coupling computational simulations with
experimental data.

. Parameters of interest are physical: material properties with
"true" value that is of interest.

. Firstly: Calibrate a well-understood model - two parameters
of the equation of state of tantalum.
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Experimental setup
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. "By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (EOS) can be
estimated".

. Massive electric currents treated as boundary conditions.

. Stress wave propagates thru system.
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Calibration
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Computer model
outputs vary as
inputs change.

Calibration
updates uncertain
inputs using
experimental
measurements.
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. Uncertain inputs generate velocity curves using a computer model.

. Probability distributions look for "agreement" of outputs and
measurements.

. Bayesian framework is a natural in this context.



b Challenge
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. How to accurately estimate uncertainties?

. Calibration parameters have physical interpretation.

. Lots of nuisance parameters.
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7 Our Framework

. Model the ith observation in the Jth experiment as (Kennedy
& O'Hagan 2001),

Y(xij) = 71(xij, a, -Yj) + (5(xii) + eii

. a are the (unknown) values of the calibration parameters.

. -yj unknown values of experimental uncertainties for
experiment j.

. y(xij) is the observed velocity at time

. a, -yj) is the computer model output at xij.

. S(xii) ̂  GP(µ6, Eo)

. Eij are errors at xij.
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8 I Dynamic material property calibration

. BMC framework to obtain inference for two material
properties of Tantalum.

. Bo and B'0 are the Bulk modulus of tantalum and its pressure
derivative.

= a2) = (Bo, BO)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density - yl
. Magnetic field scaling - 72j, j = 1,2, • • 9
. Aluminum thickness- -y3j, j = 1, 2, • • • 9
. Tantalum thickness - 74j, j = 1,2, • 9

. Potential for overfitting and lack of identifiability.
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9 I ssu es

. Model can fit well to data, solutions far from true parameter
values.

. Can we diagnose such overfitting? Can we mitigated it?

. Model discrepancy can reduce the identifiability of the
calibration parameters and lead to systematic bias.
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10 Nuisance parameters and overfitting

. Aluminum and Tantalum thickness parameters: These
nuisance parameters are measured with a device which we
believe to be well registered.

. Measurement error is exclusive source of uncertainty. The
prior mean and variance of these nuisance parameters are
well known.

. Nuisance parameters are standardized (mean 0, variance 1).

. The standard informative (51) prior is:

("Yki,-Yk2, • • • '-yk9) — N(0,19), I? = 2, 3, 4.

. "True values" are expected to look like a draw from a N(0,19)
distribution.
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Nuisance parameters and overfitting

No overfitting Overdispersion

-2 0 1 2

. Left panel: agrees with standard prior.

. Middle and left: can lead to overfitting.

Underdispersion
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, Collective Bias for 2 nuisance-sets

No overfitting

Prior log-denshy (Standard): -11.84
Prior log-denshy (Rogularizationp-0.52

Collective Bias

Prior log-density (Standard): -11.84
Prior log-denshy (Regularization): -2.6

-2 2

. Left: No grouping occurs.

. Right: Collective bias implies systematic overfitting across
experiments.

. Standard prior assigns same values.
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13 A metric for overfitting

. We define,

1
A4,), = -Y) Vy=

i=1 p i=1

ay) 2

Prior beliefs about problem structure suggests:

M7 0 "=_', 1

. Under standard normal,

= N(m l 0,1/P) x [(1) — 1)x2(v(ID — 1) P —1)]

. Reasonable to check that the estimates ik)1,), and 17), are
coherent with prior.
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A metric for overfitting

Definition: We say that (m, v) is more coherent with the prior

than (m', v') if

iray,v,(rn, v) > 7riti,„v,,,(m', v')

. Define the set of all points which are less coherent with the

prior than (N17,1/7)

I'm cf = {(m,v) l 7-A4,,v,y(M-y, 177) > 7/07,v7(m, v)}

. Probability of prior coherency of (4/11,, flif )

pc(f47,f47)=1.
Iti,y,14y

7rivi,,v7(m,v) dmdv

1 L,p-...1 
L 
- 2_, I. (7,14,,,v, (M,y, 177) > 7rAll„V.i (Mt, Vt))

e=1
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I Diagnostic plot for simulated case p = 10

No overfitting
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. Orange: Point estimates and posterior draws of (M,y,V.y)

. Blue: Prior probability contours.
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The moment penalization prior

. Overfitting of nuisance parameters leads to (M7.1/2) with low
prior coherency.

. The moment penalization (MP) prior penalizes solutions with
low prior coherency.

. Using a square loss function,

penA(7) = Al(M7 — 0)2 + A2(Vy — 1)2

Prior:
7F,A)/1, P(7) oc exp (—pen),(-y))

. Tries to encourage solutions with A/11, 0 and VI, 1.
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17 The moment penalization prior

. Therefore,

7-7(7) cx exp [—AO/112] exp [—A2(/1, — 1)2]

. Ai and )k2 control how strongly we want to enforce
constraints.

. Reparameterize: col = 2Var(M7)Ai and w2 = 2Var(V-y)A2

. Write -y — MP(wi, co2) to mean that,

74P (^y) oc exp [ P'2̀)1 M,),2] exp [ (p —41)w2 (Vy — 1)2]

. -y ,-, MP(1, 1) is the standard moment penalization prior.

o
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m Samples from the Standard MP prior

Standard Prior

MP(5,5) Prior

. 10,000 draws via M-H for p = 2.

. As c.01,c.02 —> oo all density is placed on ±(1/N/2, —1/4
(Z-regularization).

. As p grows, the induced marginal priors become N(0,1).

MP(I,1) Prior

MP(1,20) Prior
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1, Example: The simple machine

. Brynjarsdottir and O'Hagan (2014): The simpLe machine
delivers work

((x) =  
E x

1 +x/20

. x is the amount of effort put into the machine.

. E is the efficiency of the machine.

. Denominator accounts for loss of work due to friction.

. The naive simulator introduces model discrepancy

Ti(x, E) = Ex

6/11/19



20 Example: The simple machine

. We consider p = 10 simple machines, and introduce base
efficiency Gj as a machine-dependent nuisance parameter.

. Inputs xl,x2, • • • xn evenly spaced over [1,4]

. Data generating process:

E xi

Yij = Gj + 1 + xi /20 +

Gj N N(0, 0.052)

ei — N(0, 0.012)

. Naive simulator:
77(x, E, G) = G + E x

. True efficiency is E = 0.65. Standardize parameters:

E — 0.65 Gh -

0.05 

0
a =  

0 
N(0,1) =   — N(0,1).3 
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2 1 Example: The simple

. Model discrepancy leads to

O

— Simulator at truth
  Simulator at mle
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22 Example: The simple machine

. Under standard informative prior
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23 Example: The simple machine

. Under moment penalization prior
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Example: The simple machine

El SI
El MP

0.51 0 52 0.53 0.54

Efficiency

0.55 0.56

. Posterior inference improves under MP, but is still far from
truth.

. This is still valuable information! Model discrepancy is
leading to biased inference on the parameter of interest.
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25 I Dynamic material property calibration
revisited

. Inference for two material properties of Tantalum.

. Bo and E310 are the Bulk modulus of tantalum and its pressure
derivative.

= a2) = (Bo, BO)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density -
. Magnetic field scaling - 72j, j = 1,2, • • • 9
. Aluminum thickness- 73j, j = 1,2,• • •9
. Tantalum thickness - 74j, j = 1, 2,• • •9

. Perform BMC for SI, SMP and MP(20, 40) priors.
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26 I Dynamic material property calibration
Diagnostic plots
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" I Dynamic material property calibration
Physical parameter posteriors

Standard Inforrnative MP Prior (low penalty) MP Prior (high penalty)

. Similar posterior inference in all cases.

. Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.
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23 Conclusions

. Overfitting of nuisance parameters leads to systematic bias
which is often a symptom of model discrepancy.

. In complex high-dimensional problems, with appropriate
problem structure, we can:

. Identify: Probability of prior coherency identifies many types
of overfitting, should it occur.

. Reduce: The moment penalization prior reduces the
systematic bias of the nuisance parameters.

. Diagnose: Examine the sensitivity of posterior inference in
order to diagnose the presence and effect of model
discrepancy on the parameters of interest.
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