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3 I Background
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Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable.

Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over 1us) ).

Goal: Understanding of material models at extreme
conditions by coupling computational simulations with
experimental data.

Parameters of interest are physical: material properties with
"true” value that is of interest.

Firstly: Calibrate a well-understood model - two parameters
of the equation of state of tantalum.




4 I Experimental setup
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« "By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (EOS) can be
estimated”.

. Massive electric currents treated as boundary conditions.

o Stress wave propagates thru system.



5 I Calibration
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. Uncertain inputs generate velocity curves using a computer model.

. Probability distributions look for "agreement” of outputs and
measurements.

e Bayesian framework is a natural in this context.
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6 I Challenge

Velocity (km/s)
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. How to accurately estimate uncertainties?
. Calibration parameters have physical interpretation.

. Lots of nuisance parameters.
6/11/19




7 I Our Framework m

. Model the i observation in the j experiment as (Kennedy
& 0'Hagan 2001),

y(xi)) = n(Xij, o, 7)) + 0(Xj5) + €jj

. « are the (unknown) values of the calibration parameters.

- 7; unknown values of experimental uncertainties for
experiment j.

- Y(xjj) is the observed velocity at time x;;.

- n(Xjj, a, ;) is the computer model output at x;;.

. (5(X,’j) ~ GP([L(;,E(;)

. €j are errors at x;;.

6/11/19



5 I Dynamic material property calibration ED.:
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BMC framework to obtain inference for two material
properties of Tantalum.

Bo and Bj, are the Bulk modulus of tantalum and its pressure
derivative.
a = (a1, a2) = (Bo, By)

Four nuisance that may vary across p = 9 experiments

. Tantalum density - 11

. Magnetic field scaling - vy, j =1,2,---9
o Aluminum thickness- vs;, j =1,2,---9

. Tantalum thickness - v4j,j =1,2,---9 |

Potential for overfitting and lack of identifiability. |



o I Issues

. Model can fit well to data, solutions far from true parameter
values.

. Can we diagnose such overfitting? Can we mitigated it?

. Model discrepancy can reduce the identifiability of the
calibration parameters and lead to systematic bias.
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10 I Nuisance parameters and overfitting
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Aluminum and Tantalum thickness parameters: These |
nuisance parameters are measured with a device which we
believe to be well registered. |

Measurement error is exclusive source of uncertainty. The
prior mean and variance of these nuisance parameters are
well known.

Nuisance parameters are standardized (mean 0, variance 1).
The standard informative (SI) prior is: |

(7/?17’7/?27 o '7/?9) ~ N(07 I9)7 k= 273a4'

“True values” are expected to look like a draw from a N(0, Ig) '
distribution. I



m I Nuisance parameters and overfitting
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Left panel: agrees with standard prior.
Middle and left: can lead to overfitting.
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w2 I Collective Bias for 2 nuisance-sets

Collective Bias
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. Left: No grouping occurs.

. Right: Collective bias implies systematic overfitting across

experiments.
. Standard prior assigns same values.
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3 I A metric for overfitting

. We define,

p 1 p 5
Z Vy =57 2. (= M)

j=1

‘DI'—l

. Prior beliefs about problem structure suggests:

M, =0 Vy =1

. Under standard normal,
Ty v, (M, V) = N(m [ 0,1/p) x [(p— )x*(v(p —1) | p— 1)] l

. Reasonable to check that the estimates M, and V., are
coherent with prior.

6/11/19



" I A metric for overfitting m

. Definition: We say that (m,v) is more coherent with the prior
than (m’,v') if

T‘-M»y,V-y(ma V) > ﬂ'M%VW(m,, VI)

- Define the set of all points which are less coherent with the
prior than (M., V)

Ti o, = {(mv) Lo, (B, ) > e, () |

. Probability of prior coherency of (/\A/I% )

|
|
~ %Z 1 (WMA,,VW(MW Vy) > ”Mme(m@’Ve)) |
|
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15 I Diagnostic plot for simulated case p = 10
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. Orange: Point estimates and posterior draws of (M, V)
. Blue: Prior probability contours.
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16 I The moment penalization prior m
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Overfitting of nuisance parameters leads to (M., V) with low
prior coherency.

The moment penalization (MP) prior penalizes solutions with
low prior coherency.

Using a square loss function,

pen(v) = A1(My — 0)% + Ag(Vy — 1)?

Prior:
7P () o exp (—penx (7)) |
Tries to encourage solutions with My ~ 0 and V, = 1. |



w I The moment penalization prior m

. Therefore,

ny/lp('y) X exp [—)\1/\43] exp [—/\Q(Vy - 1)2]

. A1 and Ay control how strongly we want to enforce
constraints.

. Reparameterize: wy = 2Var(M,)A; and wp = 2Var(V,) Ao
. Write v ~ MP(w1,ws) to mean that,

Wﬁp("/) X exp [—%Mg] exp [_W(VV - 1)2]

. v~ MP(1,1) is the standard moment penalization prior. |

6/11/19



18 I Samples from the Standard MP prior

Standard Prior MP(1,1) Prior

Y2
10123

3 2

v
1

. 10,000 draws via M-H for p = 2. |

. As wy,ws — oo all density is placed on +(1/v/2, —1/v/2) '
(Z-regularization).

. As p grows, the induced marginal priors become N(0, 1).
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1 I Example: The simple machine

. Brynjarsdottir and O’'Hagan (2014): The simple machine

delivers work
E x

™) = T%730

. X is the amount of effort put into the machine.
. Eisthe efficiency of the machine.
. Denominator accounts for loss of work due to friction.

. The naive simulator introduces model discrepancy

n(x, ) = Ex

6/11/19




20 I Example: The simple machine m

. We consider p = 10 simple machines, and introduce base
efficiency G; as a machine-dependent nuisance parameter.
. Inputs xq, X2, - - - xp evenly spaced over [1, 4]
. Data generating process:
Vi =6t +Ex),-<,/20 A
Gj ~ N(0,0.05%)

€ ~ N(0,0.01%)

. Naive simulator:
n(x,E,G) =G+ EX |

. True efficiency is E = 0.65. Standardize parameters: |
E—0.65 Gr— 0
= 1 = ~ pd 1
()‘23 pv (()7 ) fYk ().()Ei (()7 )

6/11/19



z I Example: The simple machine

. Model discrepancy leads to systematic bias.
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2 I Example: The simple machine

. Under standard informative prior
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z I Example: The simple machine

. Under moment penalization prior
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2 I Example: The simple machine

L
O
(2}

100 150 200 250

density

0
L

0.51 052 0.53 054 055 0.56

Efficiency

. Posterior inference improves under MP, but is still far from
truth.

|
l
. This is still valuable information! Model discrepancy is |
leading to biased inference on the parameter of interest.

|
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» I Dynamic material property calibration m
revisited

. Inference for two material properties of Tantalum.

. Bo and Bj, are the Bulk modulus of tantalum and its pressure
derivative.

a = (a1, a2) = (Bo, By)

. Four nuisance that may vary across p = 9 experiments
. Tantalum density -
« Magnetic field scaling - y9, j = 1,2,---9
o Aluminum thickness- vs;, j =1,2,---9
. Tantalum thickness - y4j,j =1,2,---9

|
. Perform BMC for SI, SMP and MP(20, 40) priors. |
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Dynamic material property calibration
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7 I Dynamic material property calibration

Pressure Derivative (Bo)
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Physical parameter posteriors

Standard Informative MP Prior (low penalty) MP Prior (high penalty)
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. Similar posterior inference in all cases.

. Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.




2% I Conclusions

. Overfitting of nuisance parameters leads to systematic bias
which is often a symptom of model discrepancy.

. In complex high-dimensional problems, with appropriate
problem structure, we can:

. Identify: Probability of prior coherency identifies many types
of overfitting, should it occur.

. Reduce: The moment penalization prior reduces the
systematic bias of the nuisance parameters.

. Diagnose: Examine the sensitivity of posterior inference in
order to diagnose the presence and effect of model
discrepancy on the parameters of interest.
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