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Outline

1. motivation for polyhedral elements

2. tetrahedral subdivisions and polyhedral dual cells

3. governing equations for Lagrangian mechanics

4. finite element formulation (shape functions, quadrature)

5. examples (verification, nonlinear)
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~~~~~~~~ Trimmed
~ hexahedral
elements

Why polyhedra? el

A 4
N

* increased flexibility in finite element discretizations
(tetrahedra and hexahedra are special cases)

 enables hybrid meshing, e.g. hexahedral-dominant
using frame fields

* enables cut-cell approaches

» Voronoi meshing

Abdelkader, A., et al. (2019). "VoroCrust: Voronoi meshing without clipping.”
arXiv preprint arXiv:1902.08767. 4
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Start with a tetrahedral mesh and
then form dual polyhedral cells.
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Three types of tetrahedral subdivision h S,

barycentric full truncation partial truncation




Barycentric subdivision and aggregation ) .

aggregate of aggregate of
quadrilaterals in 2D hexahedra in 3D
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Barycentric subdivision and aggregation
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Full truncation and aggregation
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Element geometry
number of poly element vertices
number of aftactied b ic subdivisi truncated subdivision
tetrahedra arycentric supbadivision
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Governing equations (total-Lagrangian formulation)

strong form

weak form
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ax oY

u=u on I'y and P-N=t, on I}

find the trial functions u € H(Q)

/to-fvdS— P (0v/0X)dX = | poit-vdX
]__‘6 Qo Qo

for all test functions v € H{ ()

12
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Finite element formulation ) e

« Galerkin formulation

« Total-Lagrangian formulation (integrate weak form on original configuration).
* Minimize number of integration points while avoiding artificial stabilization.

« Can use both harmonic and maximum-entropy shape functions .

* Mean-dilation (F-bar) formulation for nearly-incompressible materials

« Compatible with standard trilinear hexahedron
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Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by
the following functional:

Jll) = %/Q Vi - Vip dX with ¢ € H1(Q.)

The minimizer of this functional satisfies the following
variational problem:

find ¢ € H'(Q.) with v = 9 on I'. such that
/ Vi-VodX =0
e
for all test functions v € Ha ()

The strong form of this variational problem is given by:

V3 =0 in Q. with ¥ =1 on I
14
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Harmonic shape functions

Qe

N N,
Z¢a(X)=1 Z¢a<X)Xa:X
a=1 a=1

partition of unity linear reproducibility
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Maximum-entropy shape functions

For a given X € ()., the shape functions ,(X),a =1,..., N, are found by minimizing the functional

Ny
J(a,a=1,...Ny) := Z (X)) In (32?;%) wq(X) is a suitable prior weight function

subject to the reproducing constraints Z Ve (X) =1 Z Vo (X)X, =X

This constrained optimization problem can be solved using the method of Lagrange multipliers:

<

N, Ny
L(%a, Mo, A) Zwa (wzgi) + Ao <a21 Ya(X) — 1> - <azl ba(X) Xo — X)

16
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CO m pa riso N (Hormann, K. and N. Sukumar, 2008)

harmonic max-ent
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Element integration

* Due to computational expense of plasticity models, want to minimize the number of
quadrature points.

* Follow approach of Rashid and Selimotec, 2006.

Each node is associated with a “tributary” volume.

Number of quadrature points is equal to the number of vertices.

Quadrature weight = volume of tributary volume.
* First-order accurate, but quadrature weights are positive (avoids Runge’s phenomenon)

X1

18
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Integration consistency
Divergence theorem states that: / Vi, dX :/ »* N dS
. Le

where IN is the outward unit normal vector on I’

In discrete form:

Ng Ng
Zwkvwak . Zwl zpal N; ) (a =1, 7NV)
k=1 i=1

where 1,1 := 1q(Xk), and X}, is the position of the k-th quadrature point

* For non-polynomial shape functions, this will not be satisfied in general.
* This will results in a lack of consistency (failure of the engineering patch test).

19
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Shape function derivative correction

« "Tweak” the shape function derivatives to satisfy the integration consistency condition.
 Maintain the reproducing properties of the derivatives.
* Minimize the least-squares difference between the new derivatives and the old.

Q Q Q
’ 2 . . T o
££%1£3 ,;_1 Wi||&x — VUakl| subject to the constraints E_ Wi & — E— w; Y N; =0

This constrained optimization problem can be solved using the method of Lagrange multipliers:

L&k, A Zwknak — Var|P+ X [ D wi &k — D w] YuN;
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Patch test
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Patch test i) et

tension
Error in stress with and without correction

applied traction state  without correction  with correction

tension 0.18 9.6-10"13
shear 0.13 i |

shear
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examples




Beam bending with shear loaa

fixed 1
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Convergence, harmonic vs. max-ent

L, norm energy norm
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Convergence, harmonic vs. max-ent

L, norm energy norm
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Example: large-deformation torsion

 torsion loading, 90° rotation
* neo-Hookean hyperelastic

«— O0Q0Q |—

27
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polyhedral mesh conventional hexahedral mesh

von Mises stress field
29
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Comparison of reaction forces

polyhedral mesh hexahedral mesh
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elastic-plastic plate

Example
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Simulation results

hydrostatic stress von Mises stress equivalent plastic strain
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Comparison of reaction forces

8
7-
Z 6
A4 600000000000000000069
m\
O
| .
(@)
—“—
c
R
4
O
©
Q
hexahedra
o o o polyhedra

0 0.5 1 1.5 2
extension, mm

33
_



Sandia
m National
Laboratories

Final example

von Mises stress field

Similar results using either Max-ent or harmonic.
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Summary

1. Demonstrated a class of polyhedral discretizations on complex shapes through
tetrahedral subdivision and aggregation.

2. Can use both harmonic and MAXENT.

3. Need further development to optimize integration on 12-vertex ochahedron.
Could also use Wachpress on this element.

4. Need to compare with tetrahedral elements for nonlinear solid mechanics.
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