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Outline

1. motivation for polyhedral elements

2. tetrahedral subdivisions and polyhedral dual cells

3. governing equations for Lagrangian mechanics

4. finite element formulation (shape functions, quadrature)

5. examples (verification, nonlinear)
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Why polyhedra?

• increased flexibility in finite element discretizations
(tetrahedra and hexahedra are special cases)

• enables hybrid meshing, e.g. hexahedral-dominant
using frame fields

• enables cut-cell approaches

• Voronoi meshing

cut-cell
CAD surface

Trimmed
hexahedral
elements

Kim, H.-G. and D. Sohn (2015). IJNME,102, 1527-1553.

Voronoi
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Another approach to forming
polyhedral elements

Start with a tetrahedral mesh and
then form dual polyhedral cells.
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Three types of tetrahedral subdivision

barycentric full truncation partial truncation
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Barycentric subdivision and aggregation

(a) (b)

aggregate of aggregate of
hexahedra in 3Dquadrilaterals in 2D
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Element geometry
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Governing equations (total-Lagrangian formulation

strong form OP 
: I = po it

OX

u = 'it on rot and P • N = to on Fto

weak form find the trial functions u E H1(Q0)

f to • v dS — I P : (OvIOX) dX = f po U • v dX
rt, Qo 20

for all test functions v E 1-1(1-(Q0)
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Finite element formulation

• Galerkin formulation

• Total-Lagrangian formulation (integrate weak form on original configuration).

• Minimize number of integration points while avoiding artificial stabilization.

• Can use both harmonic and maximum-entropy shape functions .

• Mean-dilation (F-bar) formulation for nearly-incompressible materials

• Compatible with standard trilinear hexahedron
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Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by
the following functional:

J(0) := 1 le vo • vo dX with 0 E H1(S2e)

The minimizer of this functional satisfies the following
variational problem:

find 0 E H1 (C2e) with 0 = 0 on Fe such that

Le VO • Vv dX = 0

for all test functions v E 1-1, (Qe)

The strong form of this variational problem is given by:

V20 = 0 in 52, with 0 = 0 on re
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Harmonic shape functions

N,

E oa(x) , 1
a=1

partition of unity

N,

>.21pa(x)xa = x
a-1

linear reproducibility
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Maximum entropy shape functions
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For a given X E Qe, the shape functions Oa (X), a = 1, . .. NV, are found by minimizing the functional

J(0a, a = 1, . .
a=

0 a(X) ln (w1Paa( X(,c)))

subject to the reproducing constraints
a=

0a(X) = 1

tva(X) is a suitable prior weight function

Nv

a=

This constrained optimization problem can be solved using the method of Lagrange multipliers:

L(0a,Ao, À) :=
Nv

a=

0a(X) ln (°a(X) + A
it.va(X)) ID

( Nv ( Nv

Oct(X) — 1) + A • Oc,(X) Xa — X)
a=1 a=

16
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Comparison (Hormann, K. and N. Sukumar, 2008)

harmonic max-ent
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Element integration
• Due to computational expense of plasticity models, want to minimize the number of

quadrature points.

• Follow approach of Rashid and Selimotec, 2006.

• Each node is associated with a "tributary" volume.

• Number of quadrature points is equal to the number of vertices.

• Quadrature weight = volume of tributary volume.

• First-order accurate, but quadrature weights are positive (avoids Runge's phenomenon)
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Integration consistency

Divergence theorem states that:

In discrete form:

V0a dX = I Oa N dS
Le re

where N is the outward unit normal vector on re

NQ

Ewk VOak

k=1

NrQ

/=1

F oai NI , (a = 1, ... , Nv)

where Oak := Oa(Xk), and Xk is the position of the k-th quadrature point

• For non-polynomial shape functions, this will not be satisfied in general.
• This will results in a lack of consistency (failure of the engineering patch test).
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Shape function derivative correction

• "Tweak" the shape function derivatives to satisfy the integration consistency condition.

• Maintain the reproducing properties of the derivatives.

• Minimize the least-squares difference between the new derivatives and the old.

min
kER3

NQ

k=

NrQ

V/PakW2 subject to the constraints tvk
k-=1 l=1

1 N' 
NT
= 0

This constrained optimization problem can be solved using the method of Lagrange multipliers:

A) := VOak112 + A •

ATL

=1 1=1

Oa/ N/
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Patch test
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Patch test

tension

1.050
0.975

0.900 •

shear

(c)
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Error in stress with and without correction

applied traction state without correction with correction

tension
shear

0.18
0.13

9.6 • 10-13
2.7 • 10-12
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examples
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Beam bending with shear load

fixed

Dmax = 0.65

/

Dmax = 0.37

(c)

0.0 —
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Convergence, harmonic vs. max ent
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Convergence, harmonic vs. max ent
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Example: large-deformation torsion

<m<

• torsion loading, 90° rotation
• neo-Hookean hyperelastic

0000
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polyhedral mesh

(a)

'ow
conventional hexahedral mesh
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von Mises stress field
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Comparison of reaction forces
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Example: elastic-plastic plate

• uniaxial extension
• elastic-plastic

constitutive model
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Simulation results

hydrostatic stress
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Comparison of reaction forces
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Final example

fixed (8 holes)

von Mises stress field

Similar results using either Max-ent or harmonic.
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Summary

1. Demonstrated a class of polyhedral discretizations on complex shapes through
tetrahedral subdivision and aggregation.

2. Can use both harmonic and MAXENT.

3. Need further development to optimize integration on 12-vertex ochahedron.
Could also use Wachpress on this element.

4. Need to compare with tetrahedral elements for nonlinear solid mechanics.
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