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2 Melting of porous solids under shock loading

o Porous solids undergo melting at much lower shock intensities than nonporous solids

o Heat generated through plastic work from removal of porosity

o Melting stress for 60%-dense aluminum —10 GPa vs. >100 GPa for solid aluminum

o Recent in situ x-ray diffraction experiments investigated melting behavior of Al powder during

shock loading1

o Performed at the Dynamic Compression Sector (DCS) at Argonne National Lab

o First direct evidence of shock-induced melting in aluminum powder

o Time-dependent melting behavior occurring over hundreds of nanoseconds

1Mandal, A., et al. "Direct observations of shock-induced melting and melt kinetics in porous solids". (unpublished)



3 X-ray diffraction experiments at DCS
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4 Methods to simulate shock compression of porous materials

o Traditional models for porous materials treat material as a continuum

o Analytical models, like the P-a modell, describe the compaction response

o Continuum simulations cannot describe heterogeneous heating occurring within shock front

( Predict complete melting for highest velocity cases in contrast to experimental observations

o Mesoscale methods explicitly resolve individual grains in powder

o Compaction processes within shock front simulated directly

o Goal to perform mesoscale simulations to investigate shock-induced melting behavior of Al

powder over range of velocities in DCS experiments

1Herrmann, W. (1969). "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials." Journal of Applied Physics 40(6): 2490-2499.



5 I Mesoscale simulation of shock generation in powder by impactor
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6 Simulation details

o Simulations performed using Sandia shock physics code CTH1

o ulti-phase equation of state2 to describe Al grains

o Phase determined by comparing P-T state to equilibrium melt line

o Ignores kinetics of phase transition

o Total energy conserved during remap step

o May lead to overheating

Explicit treatment of thermal conductivity in Al (k = 237 W/m.K)

1McGlaun, J. M., et al. (1990). "CTH: A three-dimensional shock wave physics code." International Journal of Impact Engineering 10(1): 351-360.

2Kerley, G. I. (1987). "Theoretical equation of state for aluminum." International Journal of Impact Engineering 5(1): 441-449.



7 I Heating and melting of aluminum powder at vp = 2.04 km/s
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8 Evolution of average P-T state and melt fraction
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9 Effect of heat conduction on melt behavior
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10 Normalized melt fraction in shocked state
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11 I Grain size effect on time to reach thermal equilibrium
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12 Summary of powder melt results

o Mesoscale simulations show shock heating of powder is very heterogeneous

o Leads to time-dependent melting behavior as observed in DCS experiments

o Thermal conduction within the powder leads to

o Less melting at low impact velocities as hot regions cool below melt temperature

o More melting at high impact velocities as cooler regions are heated above melt temperature

u Thermal equilibrium not achieved within duration of mesoscale simulations (2 650 ns)

o Smaller particles melt faster than larger ones

o Mesoscale simulations predict complete melt for 20 and 10 p.m grains within 400 ns at 2.04 km/s
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Additional slides



Evolution of average P-T state and melt fraction
1 5 (internal energy advection)
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16 Grain size effect on time to reach thermal equilibrium
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