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Finite element models are useful for analyzing and optimizing

Abstract Motivation Glass thickness mechanical systems without the need for physical hardware, but
Seati | finite ol dels of an alumi . 4 " Encapsulant thickness should be validated against experimental data to be used with
tatic structural finite element models of an aluminum-framed crystalline Adhesive height Backsheet thickness high confidence.

silicon (c-Si) photovoltaic (PV) module and a glass-glass thin film PV
module were constructed and validated against experimental
measurements of deflection under uniform pressure loading. Parametric
analyses using Latin Hypercube Sampling (LHS) were performed to
propagate input uncertainties into simulated deflection uncertainty and
find the parameters most correlated to simulated deflection.
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The goals of this study are to:

|. Validate models of 2 different module architectures against
experimental deflection measurements

2. Propagate uncertainties in material properties and assembly
tolerances into predicted deflection uncertainty

3. Assess which parameters are most correlated to predicted
deflection

Adhesive spread
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o
I IamE Validated models may be used for design optimization including
Friction coefficient, Steel-Frame materials selection, and analyses of deployment environments.
MethOdS Module clamp force
Finite element models of distinct module design re created: A ° o . o
te element models of two distinct module designs were create Which design parameter has the largest influence on module stiffness?
60-cell c-Si module and a glass-glass thin-flm module. Models were
developed directly from module design data.
Results and Uncertainty Quantification Sensitivity Analysis Results
— A suite of 120 simulations were run for each module using Latin Hypercube Sampling Pearson’s Correlation Coefficient (R) was computed for each
to select input parameters between bounds. Mean simulated results are shown below parameter at |.0 and 2.4 kPa pressures against deflection at
vs. experimental measurements, with simulated uncertainty represented as 2 standard module center locations, with top results shown below. Plots of
deviations away from the mean. Experimental uncertainties were based on maximum sampled parameter values vs. resulting simulated deflection for
observed asymmetry in the modules, to represent module-to-module variability. each module are shown to demonstrate correlation strengths.
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Deflection results vs. highly correlated input parameter values
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uniformly stacked on each module to achieve pressures up to 2.4 kPa, o o5 1 15 2 25 3 L ‘ = 1
. . . Applied Pressure (kPa) Distance from Module Center (m)

while measurements of deflection were collected. This load case was

replicated in simulation to allow direct comparisons between

predicted and experimental deflection to be made.
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