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Abstract
Static structural finite element models of an aluminum-framed crystalline
silicon (c-Si) photovoltaic (PV) module and a glass-glass thin film PV
module were constructed and validated against experimental
measurements of deflection under uniform pressure loading. Parametric
analyses using Latin Hypercube Sampling (LHS) were performed to
propagate input uncertainties into simulated deflection uncertainty and
find the parameters most correlated to simulated deflection.

Methods

Finite element models of two distinct module designs were created: A
60-cell c-Si module and a glass-glass thin-film module. Models were
developed directly from module design data.
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Codes and tools:
DAKOTA: Parameter generation
SolidWorks: Geometry Creation
CUBIT: Meshing
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Simulated c-Si module geometry and mesh details

Experiments applying uniform pressure loading to physical examples
of each modeled module design were conducted. Weighted bags were
uniformly stacked on each module to achieve pressures up to 2.4 kPa,
while measurements of deflection were collected. This load case was
replicated in simulation to allow direct comparisons between
predicted and experimental deflection to be made.

Pressure load:
1.0 and 2.4

kPa
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Mount points

Domain: Quarter-symmetric

Mesh: -3 million hexahedral elements

Materials: Implemented from module

datasheets and samples. Linear-elastic

constitutive behavior

Frame interactions

Simulated boundary conditions and interactions

Simulated interactions were developed to best represent actual
module construction and mounting, including:
• Frictional contacts at frame joints and clamp interfaces
• Appropriate clamping forces and screw preloads
• Conformal meshing for fully adhered interfaces

Motivation
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Finite element models are useful for analyzing and optimizing
mechanical systems without the need for physical hardware, but
should be validated against experimental data to be used with
high confidence.

The goals of this study are to:
I . Validate models of 2 different module architectures against

experimental deflection measurements
2. Propagate uncertainties in material properties and assembly

tolerances into predicted deflection uncertainty
3. Assess which parameters are most correlated to predicted

deflection

Validated models may be used for design optimization including
materials selection, and analyses of deployment environments.

Which design parameter has the largest influence on module stiffness?

Results and Unce rt a i n ty Quantification
A suite of 120 simulations were run for each module using Latin Hypercube Sampling
to select input parameters between bounds. Mean simulated results are shown below
vs. experimental measurements, with simulated uncertainty represented as 2 standard
deviations away from the mean. Experimental uncertainties were based on maximum
observed asymmetry in the modules, to represent module-to-module variability.
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Measured vs. simulated deflection at key module locations and input
parameter uncertainties and bounds

Glass-Glass Mod. Parameters

Elir Steel, Elastic Modulus [Pa]

Steel, Poisson's Ratio

E Front Glass, Modulus [Pa]

EP Rear Glass, Poisson's Ratio

Front Glass, Poisson's Ratio

Front Glass Thickness [mm]

Rear Glass, Modulus [Pa]

Rear Glass Thickness [mm]

Encapsulant, Modulus [Pa]

Encapsulant, Poisson's Ratio

L. Edge seal, Modulus [Pa]

it„, Aluminum, Modulus [Pa]

E„,, Friction, Screw-Frame

Edge seal, Poisson's Ratio

Aluminum, Poisson's Ratio

Frame clamp, Modulus [Pa]

Friction, Frame-Frame

rab

Screw preload artificial strain

Adhesive, Modulus [Pa]

Adhesive, Poisson's Ratio

Adhesive height [mm]

Adhesive #1 spread, out [mm]

111 Adhesive #1 spread, in [mm]

•
Adhesive #2 spread, out [mm]

Adhesive #2 spread, in [mm]

Adhesive #3 spread, out [mm]

Upper

1.8x1011

0.276

6.2x101°

0.216

2.0

6.2x101°

0.216

2.7

1.3x107

0.450

2.4x106

0.400

6.5x101°

0.314

1.3x108

0.2

0.2

-0.001

0.9x106

0.400

-0.5

-2.0

-2.0

-2.0

-2.0

-2.0

2.0x1011

0.305

7.6x101°

0.264

2.4

7.6x101°

0.264

2.9

1.9x107

0.499

2.8x106

0.499

7.1x101°

0.347

2.0x108

1.2

1.2

-0.005

2.7x106

0.499

+1.0

+2.0

+2.0

+2.0

+2.0

+2.0

C-Si Module Parameters

MP Steel, Elastic Modulus [Pa]

Steel, Poisson's Ratio

Glass, Elastic Modulus [Pa]

Glass, Poisson's Ratio

Glass Thickness [mm]

Backsheet, Modulus [Pa]

Backsheet, Poisson's Ratio

Backsheet Thickness [mm]

Encapsulant, Modulus [Pa]

Encapsulant, Poisson's Ratio

Encapsulant Thickness [mm]

Edge tape, Modulus [Pa]

Edge tape, Poisson's Ratio

Edge tape thickness [mm]*

Aluminum, Modulus [Pa]

Aluminum, Poisson's Ratio

Silicon, Elastic Modulus [Pa]

Silicon, Poisson's Ratio

Friction, Frame-Frame

Friction, Steel-Frame

Module clamp force [N]

1.8x1011

0.276

6.3x101°

0.216

3.10

1.0x109

0.400

0.10

1.2x107

0.450

0.90

0.5x106

0.300

0.25

6.5x101°

0.314

1.5x1011

0.252

0.2

0.2

800

0 m

2.0x1011

0.305

7.7x101°

0.264

3.30

4.0x109

0.499

0.20

1.8x107

0.499

1.00

2.0x106

0.499

0.45

7.1x101°

0.347

1.9x1011

0.308

1.2

1.2

1600

*Derived parameter, not independently sampled

Sensitivity Analysis Results
Pearson's Correlation Coefficient (R) was computed for each
parameter at 1.0 and 2.4 kPa pressures against deflection at
module center locations, with top results shown below. Plots of
sampled parameter values vs. resulting simulated deflection for
each module are shown to demonstrate correlation strengths.
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Deflection results vs. highly correlated input parameter values

1.0 kPa Load

Parameter

Glass, E

Encap., t

0.630

0.532

0.336

0.286

0.132

Edge tape, v

Glass, t

I R I
0.561

0.553

0.361

0.321

0.111

Parameter

Front glass, t

Adh. #3 Spread

I R I
0.557

0.373

0.363

0.338

0.215

Front glass, E

dh. #3 Spread

Legend: E = Elastic modulus; v = Poisson's ratio; h = Height; t = Thickness

I R I
0.582

0.476

0.291

0.280

0.238

Conclusions
For both modeled architectures, finite element models were able
to match experimental results within uncertainties for predicted
deflection under pressure loads. Sensitivity analyses found that
polymeric adhesives and seals were highly correlated to module
deflection. These results validate the applicability of finite element
models, independent of module architecture, and suggest that
polymer materials are an important parameter influencing module
stiffness.
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