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Introduction

• Detonation fireball temperatures are an important parameter to

understand for safety regulations and planning, the safe destruction of

chemical weapons, and for validation of explosive modeling

• Diagnostics in explosive environments are extremely challenging due to:

• Steep temperature and pressure gradients

• Blast wave

• Optical density of detonator fireball

• Short time scales

• Previous efforts to characterize detonator fireballs have focused on:

• Emission spectroscopy:

• Streak or high-speed cameras to capture time behavior

• Added compounds with desirable emission properties (e.g. Ba)

• Absorption spectroscopy with a variety of lasers including modeless

dye lasers, tunable diode lasers, and quantum cascade lasers

• Species measured: A1F, MgF, H20, CO, CO2, and NO

• Thermoluminescent particles extracted for ex-situ analysis

• In this work femtosecond/picosecond (fs/ps) rotational CARS is used

for spatially and temporally resolved thermometry in detonator fireballs
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Experimental Systems

Explosive Apparatus 
• The detonators used were commercially available RP-80 detonators

triggered by an exploding bridge wire

• A boom box with polycarbonate walls and fused silica windows was used

to safely contain the explosion and allow optical access

• The detonator output forms a strong pulse of hot gases and

measurements were performed at locations and times where significant

mixing with ambient gases had occurred

• Measurements were performed at 18 and 28 pts after detonation and at a

height of 35 mm above the top of the detonator
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Photographs of RP-80 detonator (left) and experimental setup (right)

CARS Instrument 
• A 1-kHz, 40-fs regeneratively amplified fs laser (Solstice Ace, Spectra

Physics) was split to form the pump and Stokes with 3 mJ/pulse each

• The oscillator of a regeneratively amplified ps laser (PL2231C, Ekspla)

was locked to the oscillator of the fs laser, and the narrowband, 50 mJ,

60-ps output was used as the probe pulse

• The relative timing to the pump and Stokes pulses was varied to shift the

peak excitation efficiency to Raman shifts of 60-300 cm-1; "r St r'.d 40 fs

• The beams were crossed to form a 1D measurement volume:

• The measurement volume height was 4 mm with 200 1.Lm resolution

• The measurement volume length was < 2 mm

fs laser

ps laser

Diagram of fs/ps CARS setup with boom box to contain explosives
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Spectral Fitting

• Spectrograms were processed prior to spectral fitting using a dynamic

background correction, and normalizing by the nonresonant

background

• A library of pre-computed CARS spectra were used to fit each row of

data

• An instrument function was varied as one of the fit parameters dues to

distortions or beam steering in the detection optics
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Single-laser shot CARS spectrogram recorded in detonation fireball
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Single-laser shot CARS spectra and best-fit theoretical spectra
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• A unique polarization scheme was needed to reject both two-beam

CARS signals which were scattered from particulate matter during the

measurement and corrupted the three-beam CARS signal
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Diagram of the polarization states used in the CARS experiment (left) and

plots of the nonresonant CARS spectra for various pump delays (right)

Results

• CARS data was recorded and fit at two different times after the

detonation at a fixed height above the detonator

• The temperature at t=28pLs is hotter than at t=18pLs
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Filtered, gated images of the detonator fireball with dashed boxes

indicating the CARS measurement regions (left); histograms of the

measured temperatures in these regions (right)
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Introduction

• In an accident scenario, burning solid rocket fuel can be a major hazard

due to the intense thermal radiation and the harsh chemicals released

• Solid rocket fuel (propellant) flames are challenging environments for

optical diagnostics and are characterized by:

• Multi-phase plumes with burning liquid metal droplets

• Temperatures near 3000 K

• Corrosive chemicals such as HC1

• Previously in our laboratory these flames were studied using digital in-

line holography, imaging pyrometry, and rotational N2 CARS

• This work presents vibrational H2 fs/ps

CARS measurements to study the fuel-

rich regions of the flame plume

• These regions are primarily

composed of reactants from the

decomposing propellant and very

little N2

• At distances far from the fuel source,

little H2 exists due to mixing and

oxidation with the ambient gases

• The propellants studied here are

aluminized ammonium perchlorate

hydroxyl terminated polybutadiene

(AP/HTPB)
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Measurement System

• A 1-kHz regeneratively amplified fs laser (Spitfire, Spectra Physics) was

split to pump an OPA (TOPAS Prime) and to form the pump pulse

• The 8014 output of the OPA near 1200 nm served as the Stokes pulse

and the frequency difference between the pump and Stokes was tuned to

excited vibrational H2 transitions (-4000 cm-1)

• A portion of the remaining 800-nm radiation was passed through an

etalon to form a narrowband ps-duration time-asymmetric probe pulse

(15 14)

• The beams were crossed to form a zero-dimensional measurement

volume with a length less than 2 mm

Simplified diagram of vibrational H2 CARS setup with etalon
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2000 Energy level diagram for vibrational H2 CARS

Imaging systems
• In addition to the CARS thermometry, the explosions were monitored

with two cameras

• 5-MHz videos of the detonation reveal the fireball dynamics and

show the arrival of the CARS lasers pulses

• A 575-625 nm bandpass filter was placed in front of a gated,

intensified CCD camera to record LII-like images of the fireball and

show the exact location of the CARS beams (see results section)

• Detonator fireball temperature measurements have been performed for

laboratory-scale detonators using rotational fs/ps CARS thermometry

• The temperatures are found to be in the range 300-1800 K

• Future work may include

• Vibrational CARS measurements of other species such as H2 or CO

• Determination of explosive composition on fireball temperature

• Measurements directly before an after the detonation front
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• In these experiments a stick of metalized propellant is burned while the

CARS measurement location is held fixed

• Initially, the lasers are blocked by the unburned propellant

• As the propellant burns downward, the location of the CARS

measurement clears the burning surface and rises into the flame

plume

• Once the CARS measurement volume nears edges of the plume or

the product zone, the amount of H2 diminished and the CARS signal

vanishes
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Diagram of CARS measurements in a Burning Stick of Propellant

• Data from three different propellant burns are shown below

• The measured temperatures from each burn are similar, indicating

repeatability in the experiment and steady operation of the laser system

• Measurements in a steady laboratory H2-air flame show a

measurement precision of 4%

• The location above the burning surface was estimated by measuring the

duration of each burn and the length of the propellant stick
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Conclusio utur W

• Vibrational H2 CARS thermometry has been performed in the plume of

a burning stick of metalized solid rocket propellant

• This data complements previous studies performed to measure the

flame temperatures using rotational N2 CARS, and the temperature of

liquid metal droplets using imaging pyrometry
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Comparison of temperature measurements in propellant flames from

vibrational H2 CARS, rotational N2 CARS and pyrometry

• Future work will focus on measuring other species in the flame plume to

better understand the chemical kinetics in propellant decomposition

and burning

• This data will be compared to flame models to understand the physical

phenomena that drive heat transfer in these flames
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