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Abstract — Spectral clustering is applied to the problem
of phase identification of electric customers to investigate
the data needs (resolution and accuracy) of advanced
metering infrastructure (AMI). More accurate models are
required to accurately interconnect high penetrations of
PV/DER and for optimal electric grid operations. This
paper demonstrates the effects of different data collection
implementations and common errors in AMI datasets on
the phase identification task. This includes measurement
intervals, data resolution, collection periods, time
synchronization issues, noisy measurements, biased meters,
and mislabeled phases. High quality AMI data is a critical
consideration to model correction and accurate hosting
capacity analyses.

Index Terms — AMI, AMI recommendations, distribution
system errors, distribution system models

[. INTRODUCTION

The availability of advanced metering infrastructure (AMI)
data provides an opportunity to analyze the distribution system
at a level that was previously impossible and to accelerate the
installation of high penetrations of residential PV systems. One
of the many challenges facing the installation of high-
penetration of residential PV systems and other distributed
energy resources (DER) is the necessity for rapid and accurate
hosting capacity analysis simulations [1]. AMI data has the
potential to aid in determining the placement of solar
installations, as well as correcting errors present in existing
utility models, [2]-[6]. Accurate models are necessary for
accurate hosting capacity analyses which are critical to
interconnect high penetrations of DER, and research using AMI
data is showing promising results in correcting common types
of errors. However, there are many open questions regarding
what type of AMI data should be collected to best facilitate the
new data science techniques. Each utility implements their own
version of AMI data collection with different collection
intervals, meter precision, etc. See [7] for an overview of AMI
and smart meter deployment.

This research attempts to answer some of these questions
about what type of AMI data is required for model correction
tasks using a synthetic dataset generated to test common AMI
configurations as well as common errors present in AMI data.
The task of phase identification is used to evaluate the effect of
possible AMI configurations and how those configurations may
interact with common dataset errors. This paper provides an

overview of these issues and concludes with recommendations
for AMI data collection based on this application.

II. RELATED WORK

AMI meters are quickly becoming the standard in the United
States as well as worldwide. There were more than 85 million
smart meters deployed in the U.S. at the end of 2018, which is
~60% of households, and 95 million are projected to be
deployed by the end of 2020 [8]. Worldwide adoption is rising
as well; [9] provides an overview of smart metering adoption
trends around the globe. Although smart meters are rapidly
becoming ubiquitous, there are few guidelines or best practices
in place regarding the specific data collection techniques or
quality considerations.

The AMI reporting interval is one of the few areas of AMI
data collection that does have some analysis in the literature. In
2013, the National Renewable Energy Laboratory (NREL)
recommended collecting AMI data at 15-minute intervals but
noted that it often gets down-sampled to 1-hr intervals. In 2015,
the U.S. Department of Energy (DOE) released a report entitled
Metering Best Practices: A Guide to Achieving Utility
Resource Efficiency in which they recommend different
collections intervals based on the use case, from monthly to 15-
minutes or shorter [10].

The Smart Grid Investment Grant Program (SGIG) summary
from 2016 [11] provides some insight into the diversity of
measurement intervals in place in the U.S. The project collected
data on the AMI collection intervals from 70 of its projects with
16.3 million smart meters in use, ~14.5 million residential
meters, ~1.7 million commercial meters, and ~50 thousand
industrial meters. Figure 1 breaks down the measurement
intervals for those customers. This subset of meters shows that
most residential smart meters are collecting at 1-hr intervals,
followed by 15-minute intervals, and most commercial and
industrial customers are collecting at 15-minute intervals.

The recommendations for measurement interval have wide
ranges, and [10]-[12] and the current literature suggestions
primarily approach these recommendations from a cost-savings
analysis perspective rather than the perspective of using the
AMI data to validate and correct distribution system models.
There is little research into what types of data analysis can be
done at varying levels of AMI quality and different data
collection techniques.
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Looking at meter accuracy or precision, the American
National Standards Institute (ANSI) defines Accuracy Classes
0.1, 0.2, and 0.5 for meters, defining the maximum allowable
percentage of measurement error for each meter type [13]. The
Electric Power Research Institution (EPRI) did a study on meter
accuracy [14], and customer concerns drove a third-party
assessment of meter accuracy in Texas [15]. These standards
and studies define limits on the measurement error, but they do
not quantify how that affects data analysis on the AMI data
generated by those meters.
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Figure 1 - Measurement intervals for the SGIG program, [11]

[16] used both 15-minute interval AMI data and 1-hr
interval AMI data for a phase identification task and concluded
that the 15-minute interval data produced better results on the
phase identification task. [5], [17], [18] use S5-minute, 15-
minute, and 1-hr AMI data respectively for phase identification.
Both [16] and [18] speculate that shorter intervals may be
needed to deal with seasonal variation in AMI data. However,
it is difficult to directly compare these methods and results due
to high variability in location, data quantities, seasons,
availability of substation voltages and a variety of other factors.
The discussion of AMI data collection techniques and quality
has been a side discussion of the available data, not the purpose
of the work.

There has been little rigorous analysis on the effects of AMI
data quality issues on the ability to use the AMI data to validate
and correct existing distribution system models, and that is the
main contribution of this research.

Table 1 shows a, non-exhaustive, list of AMI data concerns
divided into three categories. This list is compiled from
literature referenced here, general measurement error types, and
issues observed in AMI data. The first category consists of data
collection concerns that are not errors, but simply collection
decisions to be made at the time of installation of the AMI
metering system. The second category is systemic errors,
which are errors that are consistent over repeated
measurements. The third category is random errors which are
not necessarily consistent over repeated measurements. For
further treatment of types of measurement error see [19], [20].
A subset of these data concerns is explored in further detail in
the Results section below.

TABLE 1 - LIST OF AMI CONCERNS

Data Collection Decisions

e Measurement Interval
e Measurement Resolution
¢ DataQuantity and Data Type

—

* Meter Bias

¢ Time Synchronization
e Incorrect Time Zone

¢ Incorrect Meter Units

Random Errors

¢ Measurement Noise
¢ Missing Data

¢ Bad Data

e Stuck Measurements
e Meter Drift

III. TEST SYSTEM AND DATA

A year-long synthetic AMI dataset was created by running an
OpenDSS [21] simulation of EPRI’s Test circuit [22]. Itis a
12.47 kV network, single feeder with 1379 Residential loads
and 584 transformers. Average real power (kW) data at 1-
minute intervals was extracted from Pecan Street [23] to create
12-month period load profiles for 1379 customers. Reactive
power (kVAr) was created by assuming a uniform distribution
of power factors between 0.79-0.99, that varied every 30
minutes. This range was chosen by analyzing real 15-minute P
& Q load data provided by a utility. The experiments and
results shown in this research require only the voltage time
series recorded from the simulation.



IV.METHODOLOGY

A set of AMI data quality manipulations was chosen that
includes both data alterations (e.g. differing measurement
intervals) and error injections (e.g. measurement noise). The
data quality manipulations that were tested were measurement
interval, meter precision, biased meters, measurement noise,
time synchronization, missing data, available data, and
mislabeled phases. These are described in more detail in the
Results section and in Table 3 Each experiment follows the
three steps shown in Table 2. First, a data manipulation or a set
of manipulations is chosen for an experiment and those
manipulations are performed on the dataset. For example, the
dataset is first averaged to 15-minute intervals, then a maximum
of 0.15% noise is added to 50% of the meters. Second, the
phase identification algorithm from [24] is run using the altered
version of the dataset. Third, the results are analyzed to
determine, in this example, what the effects of using 15-minute
interval data with that level of noise has on the phase
identification task.

TABLE 2 - EXPERIMENTAL PROCESS

1. Alter dataset and/or inject errors

2. Run phase identification algorithm

3. Analyze the effects of the data alterations and/or errors on the
phase identification task

A. Standardized Data Processing

There are two steps of data processing on the AMI voltage
time series data prior to using it as input to the phase
identification algorithm. First, the data is normalized to a mean
of one. Then the time series is transformed into a voltage
fluctuations representation, by simply taking the difference of
adjacent measurements. This was proposed in [5] and its
efficacy was also demonstrated in our prior research on the
phase identification algorithm [24].

B. Phase Identification Algorithm

The phase identification algorithm that is used here to test the
alterations and error injections on the synthetic dataset was
proposed in our prior work [24]. Figure 2 shows a summary of
the algorithm. A ‘window’ of 4 days is selected from the
available data, customers with missing data points are removed
from the window, the remaining customers are clustered using
the spectral clustering methodology, and each customer is
assigned a predicted phase based on the majority vote of its
resulting cluster. This process is repeated in subsequent
windows until all available data has been used. Using the
window approach leverages the power of ensemble machine
learning, gives a way to deal with missing data, and allows the
algorithm to be more scalable, as the entire dataset is not in use
at once. On the dataset referenced in Section III and in the
presence of unaltered data and no mislabeled phases, this
algorithm was 100% accurate on the phase identification task.

Select a ‘window’ of data
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for each
sliding
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Figure 2 - Phase identification algorithm flowchart [24]
C. Confidence Score Analysis

A simple accuracy metric, the number of customers where
the phases is correctly predicted over the total customers, does
not give a realistic picture of the algorithm performance. We
have also chosen to assign a confidence score to each prediction
of the algorithm to give further insight into the performance of
the phase identification algorithm in the presence of differing
data formats or errors. The confidence score metric leverages
the information present due to the ensemble nature of the
methodology. The confidence score is defined as the number
of ‘winning’ votes divided by the total number of votes. For
example, say there are 20 windows of data, two were not used
because of missing data, in 15 windows the phase prediction
was phase A, and in 3 windows the prediction was phase B. In
this case, the confidence score would be 15/18 or ~0.83. This
can be interpreted as 83% of the total number of predictions
were in agreement that this is a phase A customer. Note that
the confidence score does not necessarily indicate a correct or
incorrect prediction, simply the confidence of the algorithm in
the final prediction. Figure 3 shows the confidence scores for
the dataset that has no errors injected, all customer phase labels
are correct, and the dataset is at the highest resolution. There
remain a few customers with relatively lower confidence
scores, and research is ongoing to determine why some
customer have lower confidence even in the presence of perfect
data. See Table 5 and Figure 4 for an example of an instance
of the confidence score metric providing significantly more
information than a percentage of correctly predicted customers.



TABLE 3 - AMIDATA QUALITY MANIPULATIONS FORMULAS

Variable
Definitions

Ttotar = the total number of measurements
available at the 1 — minute resolution

t €{1,2,3,..., Trora} — individual time step at
1 — min resolution

T,
i eIwhereI:{1,2,3,...,%’”}

—individual measurement

v € V,whereV = time series of
voltage measurements

Crotar = The total number of customers

¢ € C,where C ={1,23,...,Crotai}
—set of all customers

1 = ideal mean of the time series
(240 in this case)

U — uniform distribution

Measurement
Interval

For each c:
i t =k+to—1
Vc,k(i) = E Vc(t): Vi

to=(i-1)xk+1

k ={1,5,15,30,60} — measurement interval in
minutes

Meter
Resolution

For each c:
v (D) = round(v,, (i), d), Vi

d € D where D ={0, 1,2} — decimal places

Meter Bias

For Each c:
Viwias = Vi + (b * o)

p €{0,0.5,1.0,1.5,2}
—max allowable percent bias
o, ~ U(—1,1) — bias scaling factor
b = (p/100 * p) — max allowable bias

Measurement
Noise

For each c:
Uk, noise(i) = vk(’:) + (n* Ji), Vi

p €{0,0.05,0.25,0.5,0.75,1.0,1.25,1.50,1.75,2.0}
—maximum allowable percent noise
0; ~ U(—1,1) — noise scaling factor
n = (p/100 * p) — max allowable noise

Time Synch

For each c:
vi, 17c,1,time5>‘ynch(’:) = v, (i+ s.)
Ve timesyncn = Truncate (Ve simesyncn (2 * f))

f € F,where F = {1,2,3,4,5}
—max offset in minutes
se =UC-£.f)

—random scaling factor
Truncate(timeseries, truncationAmount) — truncates the
beginning and end of the specified timeseries by the
amount specified

Missing Data

For Each Customer c:
For ctr from 0 to h:
startPosition = U, (0, |1])
Ve jomissing [StartPosition
: (startPosition + g)] = NaN

p=1{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
—percentages of missing data

(p= |V|)>
h=fl _ =
foor( g

— the number of missing data instances
g = number of samples missing
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V. RESULTS

The following sections detail each of the data quality
manipulations that were simulated on the synthetic dataset.
Table 3 gives detailed formulas and definitions for each of the
manipulations performed on the dataset.

The customer phase identification task was used to compare
the efficacy of the data given each of these manipulations. A
base case was obtained for each of these in isolation, meaning
that the first experiments tested only one of these manipulations
at a time. Subsequently a more realistic combination of data
quality manipulations was constructed for a more practical test
case of the effects. For example, in the base case measurement
interval sweep, no other data manipulations are done, the
otherwise unmanipulated data is used to test various
measurement interval values. In the test case, the data is given
each of the data manipulations shown in Table 4 for the test
case and then the different values for the measurement interval
are tested. The results shown in the sections below show both
the base case accuracy and well as the test case accuracy. The
values used for the test case are listed in Table 4.

The spectral clustering algorithm used for the phase
identification task from [24] is a correlation-based method. It
should be kept in mind that we expect these results and
conclusions to be true in the context of correlation-based
analysis of AMI data, and that other methodologies may show
other sensitivities. Research is ongoing to test other types of
methodologies under this framework.

TABLE 4 - TEST CASE PARAMETERS

Quantity of
Data

For Each c:
ete12(1) Ve ie12(2), Ve 12(3), wen
Ve k12(30 *m)

Vc,k,m =

m € M where M ={12,11,10,9,8,7,6,5,4,3,2, 1}
— months of data

Data Quality Default Values Used Default Value Used
Manipulation in the Base Case in the Test Case
Measurement Interval 15-minutes 15-minutes
Meter Resolution 2 decimals 1 decimal

Meter Bias

0% maximum bias

0.2% maximum bias

Measurement Noise
(Meter Precision)

0% maximum noise

0.2% maximum noise

Time Synchronization

No time synch issues

No time synch issues

Missing Data

0% missing data

0.2% missing data.

Available Data

12 months

6 months

Mislabeled Phases

0% mislabeled

10% mislabeled




A. Measurement Interval

This data manipulation tests the different intervals that utility
companies may use for data collection. The original synthetic
data was created at a l-minute granularity, other common
choices include 5, 15, 30, or 60-minute collection intervals. To
obtain these intervals, the 1-minute granularity measurements
were averaged using the appropriate number of measurements
to obtain the new intervals. Table 5 shows the results of the
phase identification task sweeping through plausible values for
the AMI data collection interval. The number in parentheses in
this table, as well as subsequent tables, represents the number
of customers, out of 1379 customers total, that were predicted
with an incorrect phase label. The phase identification
algorithm [24] uses windows of 4 days, so if the measurement
interval is larger, then each window includes fewer data points,
shown in column 2. Columns 3 and 4 demonstrate that given
otherwise perfect data, the accuracy on the phase identification
task does not begin to degrade until the interval reaches 60-
minutes when customers are identified on the wrong phase.
However, this is a case where the accuracy metric does not
show the whole picture of algorithm performance. Looking at
the confidence scores shown in Figure 4, we can see the
algorithm confidence is nearly identical for measurement
intervals of 1-minute and 5-minutes, slight degradation at 15-
minute intervals, and then significant degradation at 30-minute
and 60-minute intervals. This suggests that the measurement
granularity should be 15-minutes or less.

TABLE 5 - MEASUREMENT INTERVAL RESULTS

PR s 100% (0) 100% (0)
P s 100% (0) 100% (0)
PR s 100% (0) 100% (0)
P 100% (0) 100% (0)
© 60min 96 100% (0) 99.93% (1)
=
5-min

1-min

Number of Customers

>
: 60-min|I

Figure 4 - Confidence scores for the measurement interval experiment
for the test case

15-min

| 30-min I

Number of Customers

Confidence Scores

B. Meter Resolution

Meter resolution is the resolution with which the
measurement is collected at the meter. Different resolutions are
obtained by rounding each measurement point to the desired
resolution. All simulations, both for the base case and the test
case, returned with perfect accuracy on the phase identification
task. However, looking at the confidence scores in Figure 5,
we can see that at least one decimal point is required for the
algorithm to have high confidence in the predictions.

2 Decimals

Number of Customers

1 Decimal 0 Decimals

Confidence Scores

Number of Customers

Figure 5 - Meter resolution confidence scores for the test case
C. Biased Meters

Meter bias is a common issue for meters in the field. We
define meter bias here as a constant factor that is added to each
measurement for a given meter. A percentage of the total
meters and a range of potential biases are chosen and for each
of those meters a bias value within the specified range is
selected and added to each measurement in that meter. Meter
bias was simulated using 100% of the meters, using maximum
bias percentages from 0-2%, shifting all voltage measurements
for that meter up or down. The meter bias had no effect on the
accuracy of the phase identification task; all simulations had
100% accuracy. The primary reason for this is that the phase
identification algorithm that is used here converts the voltage
time series into a voltage difference representation, only
considering the difference between adjacent measurements in
each timeseries. This representation removes the effect from
the injected meter bias.

D. Measurement Noise

Noise is defined as a measurement error that affects
individual measurements in a random way. A percentage of the
total meters is injected with noise, and individual meters up to
that percentage are selected randomly. For each individual
measurement in that set of selected customers, noise is
randomly selected within an acceptable range and added to the
measurement.

A baseline simulation for noise injection was run using a
uniform noise injection, where the added noise was pulled from
a uniform distribution. The maximum allowable noise
percentages tested ranged from 0-2% maximum allowable



noise, and noise was added to all meters under consideration.
Looking at Table 6, for maximum allowable noise percentages
up to 0.45%, the results on the phase identification were quite
good on the test case. Starting with 0.45% maximum noise,
accuracy began to decrease as the noise increased. Figure 6
plots the confidence scores for the test case simulation. We can
see that starting at 0.25% maximum allowable noise, the
confidence scores of the phase prediction begins to degrade
rapidly (although accuracy remains high). This suggests a
guideline of at least <0.25% maximum allowable noise in the
meter. That guideline corresponds well to the Accuracy Case
0.2 from the ANSI standards [13].

It is worth noting the effect of randomness in the test case.
At 0.05% noise there was one customer incorrectly identified.
In the test case, given the configuration of other data
manipulations present in the dataset as a whole, and for that
customer, even that level of noise was enough to cause a
misclassification. Thus, although the algorithm performance
overall is quite good at low levels of noise it is important to
keep in mind the random factors at work.

TABLE 6 - MEASUREMENT NOISE RESULTS

Miax Noise Percentage  Base Case Accuracy  Test Case Accuracy
 Original 100% (0) 100% (0)
0% 100% (0) 99.93% (1)
N T 100% (0) 100% (0)
-7 100% (0) 100% (0)
o 0s% 100% (0) 100% (0)
N 7 100% (0) 99.93% (1)
o 0ss% 100% (0) 99.71% (4)
O 0es% 100% (0) 98.40% (22)
P 9% ) 96.37% (50)
S va2%e 94.92% (70)
DT 9.3%02) 91.88% (112)
P 0% 03) 91.81% (113)

>
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Figure 6 - Measurement noise confidence scores for the test case

E. Time Synchronization

This alteration simulates a meter’s clock being out of synch
with the other meters by a specified number of minutes. This
has the effect of shifting the values of that meter relative to the
other meters. Time synchronization issues were simulated from
1-5 minutes of allowable offset. For this simulation, all
customers were given a random time synchronization error
within the range [- max offset, + max offset]. Using a
measurement interval of 15-minutes the simulations remained
completely accurate. We believe this is because the effect of
using 15-minute averages alleviates the consequences of time
synchronization issues. Investigation of the effects of time
synchronization at 1-minute measurement intervals shows that
the accuracy quickly degrades in the presence of time
synchronization issues. This suggests that there is value in the
averaging effect of using larger measurement intervals than 1-
minute.

F. Missing Data

A percentage of the total data is specified to be missing and
the number of measurements totaling that percentage is
removed from the dataset and replaced with ‘NaN’ as a marker.
Data can be missing for a variety of reasons, resulting in
varying lengths of periods where data is missing. For this
experiment we have chosen to remove data in 4-hour blocks. 4-
hours was chosen because that is representative of the median
missing data block size for the dataset used in the phase
identification research in [24]. Values tested for missing data
percentages were in the range [0%,1.0%] incrementing by
0.1%. All simulations for both the base case and test case were
100% accurate in the phase identification task.

It is important to recognize that this particular phase
identification algorithm is sensitive to the distribution of
missing data. Recall from Figure 2 that in each window, any
customer whose time series contains missing values is removed
from consideration during that window. Thus, missing data
simply decreases the total number of available windows for a
customer, and provided that enough windows remain, the
clustering and phase prediction is unaffected. ~However,
consider the case where there happens to be missing data
approximately uniformly distributed such that there is a missing
data point in each available window; in such a case this phase
identification algorithm would fail because there would be no
windows without missing data for that customer. This 12-
month dataset, using 4-day windows and 4-hour missing data
instances requires < ~4% total missing data.

G. Available Data

This alteration changes the amount of data that is used in the
simulations. There are 12-months total in the synthetic dataset,
and this alteration simply removes portions of that data from
consideration. Values were tested in one month increments
from 12-months to 1-month. Table 7 shows the results from
this sweep. The results indicate that more than 4 months of



available data is required for accurate phase identification under
the test case conditions. Larger percentages of missing data
may result in a larger data availability requirement.

TABLE 7 - DATA AVAILABILITY RESULTS

Available Data (months) Base Case Accuracy Test Case Accuracy
o 100% (0) 100% (0)
o 100% (0) 100% (0)
D U R 100% (0) 100% (0)
e 100% (0) 100% (0)
e 100% (0) 100% (0)
[ ] 100% (0) 100% (0)
s 100% (0) 100% (0)
s 100% (0) 100% (0)
4 100% (0) 99.93% (1)
I 100% (0) 100% (0)
P 9% 0) 99.50% (7)
P 9% 98.48% (16)

H. Data Quality Impact with Mislabeled Customer Phases

The next set of experiments evaluates the effect of injecting
customers with mislabeled phases into the dataset and varying
the percentage of mislabeled customers. Since some utility
distribution system models may have more problems than
others, the accuracy of the algorithm is tested for a range of
percentage of customers that have their phase mislabeled in the
original utility model before doing the phase identification
spectral clustering. This experiment more clearly indicates the
effects of the test case combination. A percentage of the total
customers is selected for their phase label to be replaced by an
incorrect label. Values tested for the percentage of mislabeled
customers were from 0%-50% and the results are shown in
Figure 7.

The mislabeled phases experiment was run as a Monte Carlo
simulation because the configuration of customers chosen to
have incorrectly labeled phases is significant in the ability of
the phase identification algorithm to correctly label those
customers. There are configurations that are more difficult to
correct the than other configurations. The 500 run Monte Carlo
simulation is designed to quantify those affects. Each value for
the percentage of customers mislabeled was run 500 times with
different customers randomly mislabeled each time. Thus, the
accuracies shown represent the average of all 500 runs. We can
see that even at low percentages of the customers mislabeled, it
is possible to occasionally misclassify a customer’s phase. This
illustrates that which customers are mislabeled is a crucial issue
for algorithm performance. The (average) accuracy slowly
degrades as the percentage of customers mislabeled increases
up to 45% where we still see a reasonable overall average
accuracy of ~95%. The base case and test case accuracies are
nearly identical, further illustrating that the choice of
mislabeled customers dominates the accuracy in this case.

In this version of the algorithm, the utility phase labels are
used to assign the predicted phases after the clustering of each
window. Therefore >50% of the phase labels must be accurate.
However, the algorithm could be adjusted to assign each
customer one of three ‘placeholder’ phases, resulting in an
accurate final clustering of the customers. In that case, it would
remain up to the utility to determine which ‘placeholder’ phase
label corresponds to which actual phase label.
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VL. DISCUSSION AND RECOMMENDATIONS

Table 8 shows a summary of conclusions that can be drawn
from the experiments described previously. These conclusions
are in context of the phase identification task using a
correlation-based method. Although that focus is relatively
narrow, the following conclusions do begin to shape the
considerations for data quality in AMI data collection. For the
measurement interval parameter, the time synchronization
experiments demonstrated that the averaging to intervals larger
than 1-minute smoothed some of the effects of time
synchronization errors, and the confidence scores from the
measurement intervals experiments (Figure 4) show that the
measurement interval should be less than 30-minutes. That
leaves acceptable measurement interval choices of 5-minutes
and 15-minutes, and the confidence scores were slightly
improved at the S5-minute interval. The meter resolution
experiments (Figure 5) clearly show that at least one decimal
point is required. The confidence scores begin to degrade at
~0.25% maximum noise in meter measurements. The results
also show that more than 4 months of AMI data is preferred for
this task Table 7. The algorithm is sensitive to the distribution
of missing data points, and so the more data that is missing, the
longer period of available data will be required to make up for
the missing data. Meter bias is not a consideration for this
methodology but may need to be considered in other contexts.



TABLE 8 - AMIDATA QUALITY CONSIDERATIONS

5 - 15-minute intervals are recommended

At least 1 decimal on voltage measurements (240V) is
required

Bias does not impact phase identification results with
this algorithm

< 0.25% maximum uniform random noise is
recommended

> |-min measurement intervals are required to account
for the time synchronization errors

Sensitive to the distribution of missing data. Given
uniformly distributed 4-hr missing data instances, with
this algorithm, the percentage of missing data is
required to be <~4%

> 4 months of AMI voltage data are required

VII. CONCLUSIONS

These preliminary results show the importance of what type
of AMI data collection techniques are employed. These results
can also begin to inform AMI data collection techniques and
illustrate the types of considerations that utilities need to
consider when implementing data collection policies. Table 8
shows a set of recommendations based on this research. AMI
data collection considerations have a significant impact on the
ability of utilities to validate and correct errors in their models
of the distribution system, and the accuracy of the model is
directly important for DER planning, interconnection studies,
and operations. Knowing what type of data to collect, what its
limitations are, and what can be done with that data will allow
rapid progress towards high-penetrations of DER safely and in
optimal locations.
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