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Abstract — This paper discusses common types of errors that
are frequently present in utility distribution system models and
which can significantly influence distribution planning and oper-
ational assessments that rely on the model accuracy. Based on
Google Earth imagery and analysis of correlation coefficients,
this paper also illustrates some common error types and demon-
strates methods to correct the errors. Error types include misla-
beled interconnections between customers and service trans-
formers, three-phase customers labeled as single-phase, un-
marked transformers, and customers lacking coordinates. Iden-
tifying and correcting for these errors is critical for accurate
distribution planning and operational assessments, such as load
flow and hosting capacity analysis.

1. INTRODUCTION

New DER installations are being connected to distribution
system in ever-increasing quantities. This poses challenges if
the utility modeling of the distribution system has inaccura-
cies, and it has been shown that there are a number of different
errors that are often present [1]. Common errors include mis-
labeled phases, incorrectly labeled connections between
homes and service transformers, location errors for service
transformers, and unlabeled photovoltaic (PV) installations;
current research is working on identifying and correcting each
of these as well as others [2]-[4]. Inaccurate models can af-
fect the operation of the grid, for example if the behavior of
PV installations is modeled poorly due to errors in the model
of the distribution system. New PV installations can also be
delayed due to uncertainty in hosting capacity results because
of errors in the models [5]; furthermore accurate simulations
are critical to prevent unwanted consequences of DER affect-
ing the grid [6]—[8]

This paper addresses the issue of quantifying the types of
errors that are potentially present in models of the distribution
system. The contributions of this paper include summarizing
the distribution system error types found in the literature,
showing specific examples of a subset of those errors in real
distribution systems, and discussing a correlation coefficient
methodology for analyzing a subset of the errors.

The remainder of the paper is structured as follows, Section
II presents a broad overview of some of the techniques used in
some of the more well-researched error types, Section III de-
tails a selection of examples of some of these error types, as
well as correlation coefficient analysis using advanced meter-
ing infrastructure (AMI) data from the northeastern United
States, and conclusions in Section IV.

II. LITERATURE REVIEW

Table 1 shows a list of selected types of errors or inaccura-
cies that may be present in the distribution system models,
along with a selection of references as applicable; neither the
list of error types nor the references list is intended to be ex-
haustive. Entries shown in bold have examples shown in Sec-
tion III. There are a wide variety of errors listed with causes
ranging from unlogged, or erroneously entered, maintenance
information to the information not ever being present in the
model to begin with. The increasing penetrations of DER
have dramatically increased the importance of simulations to
determine issues like hosting capacity for new PV installations
[7], [9]-[11]. This has made the task of validating and cor-
recting the distribution system models crucial for the continu-
ing integration of DER.

As listed in Table 1, a significant amount of research is go-
ing into identifying and correcting some of these error catego-
ries, while others have little research associated with them.
Although there are many different types of errors and conse-
quences of those errors, one thing that they all have in com-
mon is that manually correcting the errors is prohibitively ex-
pensive and time-consuming. Manual verification of these
types of errors would require crews in the field inspecting
each section of the distribution system. In some cases, it may
not even be possible to plausibly verify some of these errors.
Consider the issues of underground cabling in urban areas or
the behind-the-meter nature of PV installation parameters.
The majority of research listed in Table 1 is leveraging newly
available data, often from AMI to detect these errors, validate
the models, and correct as necessary.

Phase identification is an error type that has been heavily
researched. Phase identification approaches proposed in the
literature include correlation coefficient analysis [1], [3], [12],
[13], clustering [4], [14]-[16], supervised machine learning
[17], and video analysis [18].

Common techniques for correcting meter to transformer
pairing errors include correlation coefficient analysis [1], [4]
and linear regression [12], [19]. Linear regression is also
commonly used in parameter estimation tasks to determine
line lengths and wire types [19], [20].

Reconfigured topology detection approaches include using
mutual information to construct a tree representation of the
topology [21], using the KullBack-Leibler divergence metric
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with graphical models [22], [23], and topology ‘signature’
matching using phasor measurement unit (PMU) data [24].

TABLE 1 - LiIsT OF COMMON ERROR TYPES
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Error Types
Categories

[21], [22], [24]-[27]

State of switches (normal open or closed)

Capacitor states

and Setting
Errors

Voltage regulator settings

Switching capacitor settings

[1], [4], [12]-18]

Individual transformer phase label error

Lateral phase label error

Errors

Three-phase customer labeled as single-phase

Single-phase customer labeled as three-phase

[3], [23], [25], [28]-[30]

Missing/Incorrect GIS coordinates

Unmarked transformers

Unmarked PV installations

from the
Model

Unmetered load (unmarked customers or other sources)

Data Missing | Phase Label | System State

Connection (LN or LL) and grounding

[3], [311-33]

- PV kW rating
g Tilt
> & Azimuth
~ S Volt/VAr settings
e Connection (LN or LL)

Inverter size

Connect/disconnect dates

[27], [34]

PT or CT ratios

Units (kW vs mW)

Time zone

Measurement location

Unknown collection type (time-avg or instantaneous)

Meter Configu-
ration

Unknown meter accuracy

(1], [4], [12], [19], [20], [23], [26]

Wire Types, overhead line configuration, underground
cable insulation, lengths, and number of phases

Transformer rating, connection (LN or LL), or turns
ratio error

Substation short circuit impedance

Model Parame-
ters

Meter to transformer connection errors

New home construction

Reconductoring of lines

New voltage regulation equipment

New or Replace-
ment Equipment

Service transformer replacement

PV system detection approaches include statistical inference
based on Spearman’s rank coefficient [3], support vector ma-
chines [31], and location-specific weather analysis combined
with AMI load time series data [32]. Further analysis of PV
system configurations have been demonstrated with non-linear

least squares curve fitting, combined with a deep neural net-
work approach [33].

Much of the research into the issue of unmetered load is fo-
cused on theft detection. The main approaches used include
linear  programming [25], aggregating data from multiple
sources, including extra sensors [29], the classification ap-
proach, such as using support vector machines (SVM) [28],
and game theory [30].

II1. DISTRIBUTION SYSTEM MODEL ERROR EXAMPLES

A. Data and Analysis Methodology

The AMI data used in the following examples spans a 486-
day period for 1 feeder serving ~1000 customers in the north-
eastern United States. The data was collected using the aver-
aging method at 15-minute intervals to an accuracy of
0.0001V. The dataset contains time series of voltage, real
power, and reactive power. In addition, the dataset contains
GIS coordinates for the customers, the electrical model,
equipment information, and customer-transformer connection
labels. While manual verification of the errors is difficult,
publicly available imagery taken from Google Earth has prov-
en to be useful in validating a subset of the results. All
Google Earth and Google Street View images for the novel
examples shown here were taken from the set of images avail-
able in 2018; the overhead satellite views are from 2018 and
the Google Street view images vary somewhat in timestamp.

The examples labeled in bold from Table 1 are explored in
more detail below, and (unless otherwise specified) were pro-
posed by a phase identification algorithm, being tested as part
of previous research [14], as possible candidates for further
analysis. That algorithm used a spectral clustering approach
with a sliding window ensemble to identify the phase of cus-
tomers based on the voltage time series. That method also
produced a list of customers where the results indicated that
there was some issue that was unexplainable by a simple mis-
labeled phase for a given transformer. This small subset of
customers was then analyzed using correlation coefficients
and other information present in the utility model. The fol-
lowing section presents a selection of those customers to
demonstrate, using actual feeder data, the types of errors that
can be found in utility models and one possible method for
analyzing/correcting some of these errors.

It has been shown that voltage profiles on the same phase
and/or closer in distance will be more correlated with each
other than voltage profiles that are on different phases and/or
farther apart,[1], [4], [12], [35]. We are using Pearson correla-
tion coefficients to analyze the relationship between the cus-
tomers shown in these examples (unless otherwise specified).

B. Mislabeled Phases

Figure 1 and Figure 2 show an example of a phase labeling
error where the transformer labeled 80 in Figure 1 is labeled in
the utility model as being on Phase C (blue coloring). How-



ever, the Google Street View image in Figure 2 clearly shows
the transformer connected to the wire in the center. The mid-
dle wire in this location was verified to be phase B using other
Google Street View imagery. This example was first shown
in [14] and demonstrates a straightforward example of a trans-
former labeled as being connected to an incorrect phase.

Google Earih

Google
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N - Phase C

Figure 1 - Example of a phase labeling error with the utility model
incorrectly placing the transformer and customer on Phase C (blue)
[14]

being Phase B [14]

C. Meter to Transformer Label Error

Figure 3 shows an example of a predicted meter to trans-
former labeling error. The customer plotted in green was
flagged as a potential error; that customer is labeled as being
on the Phase B transformer shown with the red pushpin, how-
ever all of the top ten most correlated customers to the cus-
tomer in green are connected to the Phase A transformer
shown with the blue pushpin in Figure 3. Figure 4 shows
plots of normalized voltage over time; the dashed green line
represents the customer in question. Blue lines show the two
most correlated customers, from the transformer plotted in
blue in Figure 3, and the red lines represent two customers
from the transformer plotted in red in Figure 3 where the cus-
tomer was labeled in the utility model. Visually, Figure 4

clearly illustrates that the customer plotted in the dashed green
line is much more correlated to the customers in blue than the
customers in red. While the street view images are unclear in
this case, not allowing complete validation of the error, the
correlation coefficients strongly indicate that this customer
represents a transformer labeling error.

I - Phase A
W -Phase B
BN - Phase C

Figure 3 - Customer shown in the green pushpin predicted to be la-
beled on an incorrect transformer
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Figure 4 - Voltage profiles over time showing a predicted transformer
labeling error

The next example is fully verifiable for transformer pairing
using street view images. Looking at Figure 5 we see two
transformers 60 and 61 and seven customers. Transformer 61
is labeled in the utility model as being two phase (BC), serv-
ing customers 6 and 8, and transformer 60 serving customers
1-5. Note that transformer and meter GIS locations are ap-
proximate, and the transformers are actually on either side of
the street.



Original Utility Labels 3

. L%
Figure 5 - Originél uﬁlity model and connections between customers
to transformers. The actual connections are shown in Figure 6.

This area was indicated to be a problem area by the phase
identification algorithm and analysis of the correlation coeffi-
cients of voltage fluctuations along with imagery from Google
Earth show different actual interconnections, Figure 6. Cus-
tomers 6 and 8 were originally excluded from the phase identi-
fication task because they were listed as being multi-phase
customers, however customer 8 is the most highly correlated
customer to customers 3, 4, and 5. Customers 1 and 2 are
highly correlated with each other but not with customers 3, 4,
and 5. Inspection of the Google Earth imagery reveals that
transformer 61 from Figure 5 is actually two transformers la-
beled 61 and 62 in Figure 6. Transformer 61 is connected to
Phase B and transformer 62 is connected to Phase C, Figure 7.
In Figure 8, we see the incoming Phase B from Transformer
61 and the Phase A connection for Transformer 60. In this
example, this analysis identified two errors, first, what was
labeled as a single transformer in Figure 5 is actually two dif-
ferent transformers, and second, customers 3-5 are actually
connected to the same transformer as customer 8. This exam-
ple of model errors illustrates meter transformer pairing errors,
a single-phase customer which was labeled as a two-phase
customer, and what was labeled as one two-phase transformer
is actually two separate transformers serving single-phase cus-
tomers.
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Figure 6 — Actual low-voltage model
verified in street view figures below.
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Figure 8 - Phase B from Transformer 61 serving another customer
and Transformer 60 connected to Phase A

Although, the Google Street View images in this case are
fairly conclusive as a validation method, it is also constructive



to visually inspect the correlations associated with this analy-
sis. Figure 9 shows a segment of voltage plotted over time for
the customers shown in Figure 6. We can see that customers
3, 4, and 5 are indeed much more correlated with customer 8
than with customers 1 and 2. The work in [1], [4] demonstrat-
ed how similar correlation type analysis can be used to auto-
matically detect and correct meter to transformer labels.

1045 | 1

1.035 | 7 7
= =Cust1

1.03F | = =Cust2 ]
=—Cust 8

Voltage (normalized)

L L L L L

1.9905 1.991 1.9915 1.992 1.9925 1.993 1.9935 1.994
Time (15 minute measurement interval) %104
Figure 9 - Voltage plotted over time, indicating transformer labeling
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D. Unlabeled Transformers

Figure 10 shows an example where the original utility label-
ing indicates three customers connected to Transformer 70.
However, the customers in orange are highly correlated with
each other but not well correlated with the customer in yellow.
Inspection of the Google Earth imagery reveals an unmarked
transformer shown in Figure 11. This example demonstrates a
case where the error is not simply customers labeled on an
incorrect transformer, but also a piece of equipment that is
missing from the model. This type of model error has impli-
cations for service restoration scenarios as well as ongoing
maintenance or maintenance projections for the utility.

Google Earth
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Figure 10 - Original utility low-voltage model, yellow customer not
well-correlated with the orange customers. Actual model is shown in
Figure 11.
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Figure 11 - Actual topology, validated with Google Street view
showing an additional transformer not in the utility model.

E. Missing GIS Coordinates

Within this dataset there are a number of customers for
which there is timeseries, AMI data, but the geographical co-
ordinates within the GIS model and the pairing to a service
transformer are lacking. Analysis of correlation coefficients
can aid in identifying these customers within the GIS model.
Figure 12 illustrates this; there are two customers shown that
are lacking geographical coordinates (shown in green), and the
most highly correlated customers to those two customers are
shown in blue. It is plausible to hypothesize that those AMI
time series match up with those two unknown customers.
Figure 13 shows the voltage profiles over time for the custom-
ers shown in Figure 12. The two unknown customers are
plotted with the dashed green lines, the blue lines are the high-
ly correlated customers on the transformer shown in Figure
12, and the customer in red is a customer on an adjacent trans-
former, plotted as a reference. We can see that the green (un-
known) customers and the blue customers are highly correlat-



ed, particularly relative to the customer on the adjacent trans-
former. This particular feeder alone has about 40 customers
for which there is no matching GIS data, thus this type of
analysis may be critical for improving the accuracy of existing
models.
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Figure 12 - Example of secondary system model going to two houses

without AMI meters marked at the location
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Figure 13 - Voltage profiles for two customers with unknown loca-
tions highly correlating with other customers on a transformer

F. Three-phase Customer Labeled as Single-phase

Figure 14 shows the satellite view for a possible three-phase
customer which is labeled in the utility model as a single-
phase customer. The street view images are inconclusive in
this case, however the customer in yellow is adjacent to the
substation, with the three-phase lines running down the street,
and the building in question is not a residence. Generally plot-
ting the most correlated customers to a specific customer re-
sults in customers which are on the same phase and nearby.
However, in this case, plotting the most highly correlated cus-
tomers to the customer in yellow results in customers in di-
verse locations and on differing phases. This suggests that
this customer may be a three-phase customer mistakenly la-
beled as a single-phase customer. In general, analysis of 3-

phase customers may be more challenging because there are
fewer 3-phase customers, and there is uncertainty on what
values (phase, line to line, or average) are being recorded.

Figure 14 - Possible three-phse customer

G. Unlabeled PV Installations

Figure 15 shows an example of a residential customer with
PV panels installed which are not marked in the utility model.
There are many reasons why unmarked PV installations may
exist in a utility model, including the relevant updates not be-
ing entered into the model in a timely manner (or were lost)
and non-permitted installations [36].

Figure 15 - Customer with PV panéls that are not included in the
utility model.

H. Incorrect Secondary System Line Lengths and Customer
Position

Utilities often have little information about the conductor
types or lengths between the service transformer and the AMI
meters on low-voltage networks. Even in cases when this
system is modeled, the precise distances and locations may be



incorrect. In [37], secondary system parameter estimation is
performed using linear regression. They also were able to
leverage Google Earth images to verify selected results. Fig-
ure 16 shows the topology, as it was labeled in the utility
model, of three customers connected to the same transformer.
Figure 17 shows the actual topology, showing that Customer 3
is both marked in the wrong location relative to the transform-
er and is much farther away from the transformer. For more
results and details, see [37].
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Figure 16 - Original topolog-y“as marked i the utility model with
customer 3 marked too close to the transformer and where there is
not a house [37]

Customer 3

Figure 17 - Topology as Verihed by the parameter estimation algo-
rithm and Google Street View images [37]

IV. CONCLUSION

This paper addresses some error types that can be expected
in the GIS data and distribution system models built based on

GIS data. This paper demonstrates the presence of these er-
rors in a real utility distribution feeder and demonstrates the
efficacy of using correlation coefficients to aid in determining
both the error and potentially its solution. Examples shown
include phase label errors, customer-transformer map-
ping/connection errors, single-phase customers marked as
two-phase customers, unmarked transformers, customers lack-
ing geographical coordinates in the model, unmarked PV in-
stallations, and three-phase customers marked as single-phase
customers. Table 1 provides a non-comprehensive list of the
error types that may be present in distribution system models
as well as a selection of references demonstrating current
work is those areas.

Understanding the types of errors that are typical in distri-
bution system models, identifying the errors, and correcting
those errors is critical in integrating growing penetration of
DER into the distribution systems. Accurate distribution
planning and operation applications, such as load flow and
hosting capacity analysis rely on accurate distribution system
models. Moving forward, integrating growing penetration of
DER will require increasingly accurate and detailed distribu-
tion system models.
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