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High dime sionality is a major challeng in forward UQ

o High dimensionality is the result of

o Large number of uncertain parameters/inputs
• Large number of degrees of freedom in random field inputs

• PCE sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

• Monte Carlo requires similarly large number of samples when the
number of important dimensions is very high

• However, typically, physical model output quantities of interest
are smooth Only a small number of inputs are important

• In this case, the way out is:

o Use global sensitivity analysis (GSA) with Monte Carlo to
identify important parameters

o Use PCE sparse-quadrature on the reduced dimensional space
for accurate forward UQ
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o• a sensitivit analysis: Sobol indices

Global sensitivity analysis (GSA) (SalteLti:2004,2008)

O For a given quantify of interest (Qol)

o Qol variance decomposed into contributions from each parameter

o Sobol indices rank parameters by their contributions (Sobol:2003)

EA [VarA  (f (À) A.)]
Total effect ST —  Var( f (À))

ST, small low impact parameter fix value (eliminate dimension)

How to compute?

• Monte Carlo estimators (satteui 2002,201o) still prohibitive if used directly
for large scale computational models
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Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
com • utational costs:

• Reliable MC-estimation of sensitivity indices requires regularization

• Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

• Employ k i -norm constrained regression to discover a sparse PCE

- compressive sensing

• Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods

o Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

• Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space
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Estimation f GSA Sobor Indices with P regularization

o When the number of samples is small, the GSA sensitivity indices
can be computed with improved accuracy, relying on regularization

• Use regression with MC samples to fit a Legendre-Uniform PCE to
the data

= CkWk

o Use PCE to evaluate Sobol Indices directly
Sargsyan, 2017

co Example results illustrate significant improvement over the direct
estimation from samples
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Estimation of SA Sobor Indices with P regularization
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Estima ion of GSA Sobor Indices with P regularization
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Estimation of GSA Sobor Indices with P
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Sparse regressio

Model:
K —1

= f () — Ckk k.()
k=0

o With N samples (C , yl), , yN), estimate K terms co, , cK

min 11y AcH

With N << K under-determined, need regularization

• Use fl norm regularization to discover sparsity

o Compressive Sensing; LASSO; basis pursuit

min { — + c

min { — Ac

min { c

1}

2} subject to 11011 < C

subject to — Ac <

o Discover a sparse fitted PCE - many zero coefficients
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Multilevel Multifideli y (MLMF) Methods for UQ

When the computational model is quite expensive, we still seek more
reduction in the required number of expensive samples

o Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

o Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model
computations to achieve target accuracy with MC

o Choice of how many simulations to run at low and high
fidelity/resolution is done adaptively
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LES Pe
Joe Oefelein

formed using RAPTOR Code Fr
- Sandia National Labs. - currently at Georgia Tech

mework

Theoretical framework ...
(Comprehensive physics)

- Fully-coupled, compressible
conservation equations

Real-fluid equation of state
(high-pressure phenomena)

Detailed thermodynamics,
transport and chemistry

Multiphase flow, spray
Dynamic SGS modeling
(No Tuned Constants)

Numerical framework ...
(High-quality numerics)

Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation)

Detailed treatment of geometry,
wall phenomena, transient BC's

Massively-parallel ... (Highly-scalable)

- Demonstrated performance on full hierarchy of
HPC platforms (e.g., scaling on ORNL CRAY XK7
TITAN architecture shown below)

Selected for early science campaign on next
generation SUMMIT platform (ORNL Center for
Accelerated Application Readiness, 2015 - 2018)

150000

o_

-o

o_ 
a) 100000

(./)

_c
:5 50000
o

ti 

_

Near linear scalability
beyond 100,000 cores _

50000 100000
Number of Cores

100

95

90

85

80
150000

Pa
ra

ll
el

 E
ff

ic
ie

nc
y,

 %
 

SNL Najm Comp 11/19



Intro PCfit Sparse MLMF Scram Clos

Instantaneous Flow Structure - z-inj cut - 3D d16
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Multilevel and m ltifdelity forms
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Telescopic sum:

Increasing grid resolution level

model A
grid 1

model B
grid 1

model Z
grid 1

model A
grid 2

model A
grid 3

ff, (À) = fo + E
.e=1

model A
grid G

model Z
grid G

• Q indicates different grid levels or fidelity of models

• A.e indicates difference between models and — 1

L
Function approximation: fr, (À) c,„-, fL (À) = (À) E (À)

t=i
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High-D - ML/MF UQ Results

2D LES
Coarse Grid

2D LES
Fine Grid

tultifidelity 3D LES
Coarse Grid

3D LES
Fine Grid

Two model forms and two mesh
discretization levels

O Model form: 2D (LF) and 3D (HF) LES

O Meshes: d/8 and d/16

The P1 problem is considered (24 inputs).
Five Qols extracted over a plane at x/d = 100.

• [E0,t stagnation pressure (Po,m,„„)

• [E0 RMSt stagnation pressure (P0,,,,,,,„)

• [E0,t Mach number (Mme„„)

• [E0,t turbulent kinetic energy (TKE„,,,„„)

• [Eu,t scalar dissipation rate (x„,,e„,)

2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.
d/16 25.5 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Jet in crossf ow unit problem: 24 param

Parameter Range Description
inlet boundary conditions

PO [1.406,1.554] MPa Stagnation pressure
To [1472.5,1627.5] K Stagnation ternperature
M0 [2.259, 2.761] Mach nurnber

5a [2. 6] mrn Boundary layer thickness

Li [0. 0.05] Turbulence intensity magnitude
Li [0. 8] mm Turbulence length scale

Fuel inflow boundary conditions

in f [6.633. 8.107] x 1 0— kg/s Mass flux

Tf [285, 315] K Static temperature

Mf [0.95,1.05] Mach nurnber

/ f [0, 0.05] Turbulence intensity magnitude

L f [0.1] mm Turbulence length scale

Turbulence model paremeters
cR [0.01, 0.06] Modified Smagorinsky constant

Pr't [0.5.1.7] Turbulent Prandtl number

Set [05.1.7] Turbulent Schmidt number
Wall boundary conditions

Tw Expansion in 10 params Wall temperature represented via
of W(0, 1) Karhunen-Loeve expansion

o Qols: Pstag, Pstag,rms, M, TKE, x

o fixed at x/d = 100, averaged across y/d and t

o 3rd-order PCEs

o 2D runs: 1939 (coarse grid), 79 (fine grid)

o 3D runs: 46 (coarse grid), 11 (fine grid)
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Unit problem: ota sensitivity
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Discussion and Cl

o Necessary workflow for UQ in large-scale computational models

o Global sensitivity analysis to cut dimensionality, assisted by

- Polynomial Chaos regression
- ft-norm regularization / compressive sensing
- Multilevel Monte Carlo & Multifidelity

o Adaptive sparse quadrature forward UQ on reduced
dimensional space

o Resulting PC surrogate can be used in Bayesian inference on
model parameters and optimization under uncertainty

o Other avenues to re-cast the problem in low-D:

o Basis adaptation & active subspace methods
o Manifold discovery, e.g. via lsomap or diffusion maps

o Caution: Noisy computational Qols due to finite averaging windows

o Other surrogate options beside PC include local interpolants, Padé,
RBFs, GPs, neural networks, etc
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