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Intro

High dimensionality is a major challenge in forward UQ

@ High dimensionality is the result of

@ Large number of uncertain parameters/inputs
@ Large number of degrees of freedom in random field inputs

@ PCE sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

@ Monte Carlo requires similarly large number of samples when the
number of important dimensions is very high
@ However, typically, physical model output quantities of interest
aresmooth = Only a small number of inputs are important

@ In this case, the way out is:

@ Use global sensitivity analysis (GSA) with Monte Carlo to
identify important parameters

@ Use PCE sparse-quadrature on the reduced dimensional space
for accurate forward UQ
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Intro

Global sensitivity analysis: Sobol indices

Global sensitivity analysis (GSA) (saltell:2004,2008)
@ For a given quantify of interest (Qol) ...
@ Qol variance decomposed into contributions from each parameter
@ Sobol indices rank parameters by their contributions (Sobol:2003)
Ey [Vary, (F(V)[A)]
Total effect Sp = —= =
b Var(f(A))

Sy, small = low impact parameter = fix value (eliminate dimension)

How to compute?

@ Monte Carlo estimators (saltell:2002,2010) still prohibitive if used directly
for large scale computational models
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Intro

Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
computational costs:

@ Reliable MC-estimation of sensitivity indices requires regularization

@ Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

@ Employ ¢;-norm constrained regression to discover a sparse PCE
- compressive sensing

@ Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods
@ Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

@ Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space
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PCfit

Estimation of GSA Sobol Indices with PC regularization

@ When the number of samples is small, the GSA sensitivity indices
can be computed with improved accuracy, relying on regularization

@ Use regression with MC samples to fit a Legendre-Uniform PCE to

the data
u(§) = Z Vi (§)

@ Use PCE to evaluate Sobol Indices directly
Sargsyan, 2017

@ Example results illustrate significant improvement over the direct
estimation from samples

Najm Comp

6/19



Estimation of GSA Sobol Indices with PC regularization
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Estimation of GSA Sobol Indices with PC regularization
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Estimation of GSA Sobol Indices with PC regularization
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Sparse
Sparse regression

K-1
Medek y=f&) = ¥ (&)
k=0
e With Nsamples (¢!, 41), ..., (&N, y), estimate K terms cg, ..., cj_;
min ||y — Ac|[3

With N << K = under-determined, need regularization
@ Use ¢, norm regularization to discover sparsity
@ Compressive Sensing; LASSO; basis pursuit

min {ly — Ac|3 + || }
min {|ly — Ac||3} subjectto|c|, <e
min {|c|,} subjectto |y — Ac|3 < e

@ Discover a sparse fitted PCE - many zero coefficients
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MLMF

Multilevel Multifidelity (MLMF) Methods for UQ

When the computational model is quite expensive, we still seek more
reduction in the required number of expensive samples

@ Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

@ Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model

computations to achieve target accuracy with MC

@ Choice of how many simulations to run at low and high
fidelity/resolution is done adaptively
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Scram H

Supersonic Combusting Ramijet (scramjet)
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Scram HiD

LES Performed using RAPTOR Code Framework

Joe Oefelein - Sandia National Labs. - currently at Georgia Tech

* Theoretical framework .. « Massively-parallel ... (Highly-scalable)
(Comprehenswe Phys'cs) — Demonstrated performance on full hierarchy of
— Fully-coupled, compressible HPC platforms (e.g., scaling on ORNL CRAY XK7
conservation equations TITAN architecture shown below)
— Real-fluid equation of state — Selected for early science campaign on next
(high-pressure phenomena) generation SUMMIT platform (ORNL Center for

— Detailed thermodynamics, Accelerated Application Readiness, 2015 — 2018)

transport and chemistry
— Multiphase flow, spray 150000 100
— Dynamic SGS modeling

(No Tuned Constants)

+ Numerical framework ... 195

(High-quality numerics)

— Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

— Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation) o Near linear scalability

— Detailed treatment of geometry, 5 beyond 100,000 cores
wall phenomena, transient BC’s 1k 4 g 180

1 50000 100000 150000
Number of Cores

100000 -
= 490

50000 1es

Algorithmic Speedup
[
\

Parallel Efficiency, %
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Scram HiD

Instantaneous Flow Structure — z-inj-cut - 3D d16

Y COo2 [-]
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Scram HiD

Multilevel and multifdelity forms

Increasing grid resolution level

grid 2 grid 3 grid G

grid 1
model B
grid 1
model Z . model Z

grid 1 grid G
L

Telescopic sum: FLO) = fo(0) + ZfAz</\)
=1

model A |

model A |

model A |

model A |

Increasing model fidelity

@ /indicates different grid levels or fidelity of models
@ A, indicates difference between models ¢ and ¢ — 1

Function approximation: 7 (\) ~ f, (\) = J?o(A) £ Z Fa, (V)
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Scram

HiD

High-D - ML/MF UQ Results

2D LES Multifidelity 3D LES
Coarse Grid Coarse Grid

[9AJ[IMIAL

2D LES 3D LES
Fine Grid Fine Grid

Two model forms and two mesh
discretization levels

@ Model form: 2D (LF) and 3D (HF) LES
@ Meshes: d/8and d/16

The P1 problem is considered (24 inputs).
Five Qols extracted over a plane at «/d = 100.

® [, , stagnation pressure (Py ., can)

£, RMS, stagnation pressure (P ., 5)
£y, Mach number (M,,, )

£, turbulent kinetic energy (TKE,,, . 5.,,)

£, scalar dissipation rate (x ,, ¢ qn)

2D 3D
da/8 T 204
d/16 | 255 1844

Relative computational cost for the model
forms and discretization levels.

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Scram HiD

Jet in crossflow unit problem: 24 parameters

Parameter Range Description
Inlet boundary conditions

PO [1.406, 1.554] MPa Stagnation pressure

To [1472.5,1627.5] K Stagnation temperature

My [2.259, 2.761] Mach number

S [2. 6] mm Boundary layer thickness

I; [0,0.05] Turbulence intensity magnitude
Ly [0, 81 mm Turbulence length scale

Fuel inflow boundary conditions

Ty [6.633,8107] x10 S kg/s  Mass flux

Tf [285, 315] K Static temperature

My [0.95,1.05] Mach number

Iy [0, 0.05] Turbulence intensity magnitude
L i [0, 11 mm Turbulence length scale

Turbulence model parameters

Cr [0.01,0.06] Modified Smagorinsky constant
Pry [0.5,1.7] Turbulent Prandtl number

Scy [0.5,1.7] Turbulent Schmidt number

Wall boundary conditions
Ty Expansion in 10 params Wall temperature represented via
of N(0, 1) Karhunen-Loéve expansion
® QOIs: Pyyuy. Purag.rmer M, TKE, X

o fixed at x/d = 100, averaged across y/d and ¢
@ 3rd-order PCEs
@ 2D runs: 1939 (coarse grid), 79 (fine grid)
@ 3Druns: 46 (coarse grid), 11 (fine grid)
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Scram HiD

Unit problem: total sensitivity

Multilevel expansion of:

Jop,a/i6 = fap,ass t fAQD)d/lﬁggDyd/s

Xmean

TEE i
Multifidelity expansion of:

M,

inean

f3D,d/s = f2D,d/8 + fASD,d/S—ZD,d/S
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Scram HiD

MC-Predicted Uncertainty in Mean Flow Quantities - 3D

Temperature [K]

mean(7) . 5‘ E
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Scram HiD

MC-Predicted Uncertainty in Mean Flow Quantities - 3D

Ethane

stdev(0,)

Carbon Dioxide

mean(CO,)

stdev(CO,)
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Clos
Discussion and Closure

@ Necessary workflow for UQ in large-scale computational models
@ Global sensitivity analysis to cut dimensionality, assisted by
- Polynomial Chaos regression
- ¢,-norm regularization / compressive sensing
- Multilevel Monte Carlo & Multifidelity
@ Adaptive sparse quadrature forward UQ on reduced
dimensional space
@ Resulting PC surrogate can be used in Bayesian inference on
model parameters and optimization under uncertainty

@ Other avenues to re-cast the problem in low-D:

@ Basis adaptation & active subspace methods
@ Manifold discovery, e.g. via Isomap or diffusion maps

@ Caution: Noisy computational Qols due to finite averaging windows

@ Other surrogate options beside PC include local interpolants, Padé,
RBFs, GPs, neural networks, etc
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