
A Unique Similarity Metric for Anomaly Detection in Social Networks

Abstract

The ability to detect changes between similar
networks can be viewed as an anomaly detection
problem. This paper presents a network similarity
metric that is sensitive enough to detect subtle changes
in link strength or network structure without early
saturation when dramatic changes must be detected.
The algorithm achieves this level of fidelity by
combining multiple network analysis algorithms in an
efficient manner.

1. Introduction

Graphs are used to represent a variety of network
phenomena, such as social interactions in humans [1]
and animals [2], web searches [3], traffic [4], semantic
analysis [5], brain function [6], and molecular physics
[7]. Often these networks are observed to evolve over
time, and therefore it is of interest to detect changes in
the network structure. In order to detect differences in
a network at different points in time, it is necessary to
quantify the amount of similarity between two
networks. Several graph similarity metrics have been
proposed in the literature, each of which leverages
different network properties.

There has been a great deal of work regarding
graph similarity and how to measure it, but relatively
little attention has been paid to methods for
continuously monitoring these changes for anomalous
behavior. In dynamic networks one would expect a
certain amount of natural shifting in nodes and edges
over time, which may be characterized as noise.
However, a substantial change in the network
topology would indicate anomalous activity. By
quantifying and tracking the similarity between
instances of the network over time, anomaly detection
methods could be applied to understand when a
network's baseline level of shifting has been
punctuated by an event of interest. Our contribution is
twofold: 1) We present a new network similarity
metric which simultaneously and directly
incorporates: node existence, edge existence, edge
weight, and higher-order structure and 2) we propose
using control charts of the similarity metric to detect
anomalies in a network over time.

The literature examining and quantifying graph
similarity is extensive. Graph isomorphism, in which
two graphs with the same number of nodes are
connected in an identical way, is one way of
determining whether two graphs are similar [8]. Graph
isomorphism is a combinatorial optimization problem
that is difficult to solve, and many procedures have
been proposed for doing so [9-11]. In addition to
algorithms that determine whether two graphs are
isomorphic there is also a similarity measure based
upon data fusion of isomorphic and nonisomorphic
subgraphs [12]. Research on common graphs seeks to
identify the maximum or minimum common
isomorphic subgraph or supergraph, respectively [13-
14].

While graph isomorphism determines whether two
graphs are identical, a graph edit distance approach
allows one to quantify the similarity between graphs at
a higher resolution. Graph edit distance is the smallest
cost needed to transform one graph to another via edit
operations (i.e., addition and deletion of nodes and
edges) [3, 15-17]. However, calculating graph edit
distance is computationally expensive, and there is no
effective, general method since calculating cost is
application-dependent. One study [18] proposes using
the Levenshtein distance (i.e., string edit distance) in
combination with a canonical labeling system as an
alternative. Related to the idea of graph edit distance,
another study [1] characterizes the similarity between
graphs as a graph differential tuple, consisting of the
set of added and removed nodes and edges as well as
the set of modified edge weights. They propose several
metrics combining information from these three forms
of graph edits, and they propose a separate metric
based solely upon the difference in edge weights.
However, the authors do not combine the graph edits
with changes in edge weights for a single,
comprehensive metric. Other researchers have
leveraged aggregate measures of graph topology using
a statistical framework [19-20]. By defining and
quantifying network structural properties such as
betweenness and degree distribution, similar graphs
can be compared, and their structural differences can
be described in an interpretable way. Other researchers
[21], for example, employ a forgetting mechanism in
their calculation of such structural measures to
characterize structure in an evolving network. Spectral
graph theory has emerged as another option for
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assessing graph similarity. These methods calculate
the distance between the eigen decomposition of the
two graphs' matrices [22-23]. Another study [24]
proposes the DeltaCon similarity metric which
compares pair-wise node affinities of two graphs,
although the metric is heavily influenced by which
characterization of node affinity is utilized.

Several attempts have been made to combine
approaches. One study [6] propose an algorithm that
incorporates graph edit distance, string edit distance,
and physical location to compare graphs of brain
connectivity. Another study [25] fuse graph edit
distance and maximum common subgraph into a graph
distance metric in an anomaly detection setting for
detecting changes on the attack surface of dynamic
computer networks. Other researchers [3] also
consider the problem of anomaly detection on
consecutive graphs in time. They propose sequence
and signature similarity measures, adapted from
document and vector similarity methods, to detect
anomalies on web graphs.

2. Formulation

The similarity metric is composed both of simple
network metric calculations as well as a small
optimization for determining the node matches
between clusters.

2.1. Similarity calculation

Assume we have two similar networks A and B
which each have nodes with unique numeric IDs.
Nodes are considered to match when their numeric IDs
match. Two links are considered to match when they
connect the same two nodes with the same IDs. Note
that our implementation assumes bidirectional links
for simplicity, but the calculation is still valid when
used with directed networks. The similarity between
the two networks is calculated as the weighted sum of
the four components defined below and can range in
value from zero to one.

Link Strength Similarity provides a measure of the
link strength similarity between networks and is the
sum of the absolute strength differences normalized by
the sum of the strengths across both networks. If there
is a link in one network that does not exist in the other,
then the "missine link has a strength value of zero. If
all link strengths match, this component has value
zero. If there are no matching links, then this
component has value one.
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In this equation, .574 is the strength of link i from

network A,S
B 

is the strength of link i from network B,
and N is the maximum number of links between both
networks.

Matching Link Ratio is the ratio of the number of
matching links between networks to the total number
of unique links across both networks. Two links are a
match if they connect two nodes with the same IDs. If
all links match, this component has value one. If no
links match, this component has value zero.

LM 
—
Total number unique links in both networks

Number matching links between networks
(2)

Matching Node Ratio is the ratio of the number of
matching nodes (nodes with equal-valued IDs)
between networks to the total number of unique nodes
in both networks. If all nodes match, this component
has value one. If none of the nodes match, this
component has value zero.

Nm —
Number matching nodes between networks

Total number unique nodes in both networks (3)

Matching Cluster Ratio is the ratio of the number
of matching node-cluster labels to the total number of
unique nodes across both networks. It is assumed that
there are an equal number of clusters in each network.
If all nodes have matching cluster labels, this
component has value one. If none of the nodes have
matching cluster labels, this component has value
zero.

Number matching node cluster labels between networks (4)
N  Total number unique nodes in both networks

Total Similarity, S, is the weighted sum of these
components:

S= 0.25*(1-Ls) + 0.25*Lm + 0.25*Nm+ 0.25*Nc (5)

Note that the components could be weighted
differently based on the application so long as the
similarity still has a range from 0 to 1. For example,
if the nodes in both network are guaranteed to match
(resulting in a constant value of 1 for Nm), the
coefficient of NM could be changed to zero and the
coefficients for all other components could be changed
to 1/3.



2.2. Node cluster mapping optimization

In order to calculate the matching cluster ratio
component of the similarity, the best cluster mapping
between the two networks must be determined. To find
the best cluster mapping for a large number of clusters,
it becomes too expensive to examine all C!
permutations, where C is the number of clusters in
each network (assumed to be the same). The goal is to
find the mapping with the greatest number of
overlapping nodes across all cluster-cluster
assignments between networks A and B. To find this
mapping, a population-based metaheuristic is
employed.
A selection of initial solutions is generated by

randomly assigning clusters in network A to clusters in
network B and calculating the node overlap. The set
of random solutions is augmented with a set of greedy
solutions which attempt to assign the highest
overlapping clusters to each other in a systematic
fashion. The overlap counts for each cluster in
network A to the highest overlapping cluster in
network B can be summed to give the theoretical
maximum overlap count for the best mapping solution.
A population-based local search technique is used to
gradually improve the collection of initial solutions
generated.

2.3. Node clustering optimization

To compare the clustering of nodes in each
network, we must first determine the node-cluster
assignments. The standard Louvain algorithm [26]
determines the optimal clustering for a collection of
linked nodes by maximizing the modularity. The final
number of clusters is determined by the algorithm and
cannot be a fixed value. Our modified version of the
algorithm allows the number of clusters to have a fixed
upper bound and is a population-based metaheuristic
using modularity as the objective value. The
optimization is broken down into two main pieces:
initialization followed by solution tuning via local
search. The initialization procedure essentially follows
the first phase of the Louvain Method by separating all
nodes into separate communities then finding the best
community for each node by calculating the relative
gain in modularity. If the number of remaining
communities is still greater than the maximum allowed
number of clusters, the communities are optimally
combined until there are no more than the allowed
number remaining. The resulting solution is
augmented by creating a collection of solutions with
random node-cluster assignments. All solutions are
then tuned by executing a local search of moving

single nodes or fully-connected groups of nodes to
new communities in an effort to maximize the
modularity. The solution with the highest modularity
is then retained as the final solution.

3. Experiments

In order to determine the efficacy of the algorithm
for detecting changes to a network, a simple network
consisting of 25 nodes in five distinct clusters is
constructed as shown in figure 1.
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Figure 1. Simple 25-node, 5-cluster network

The nodes are minimally connected within each
cluster so that overall network modularity is 0.8 with
no cross-cluster links. Two experiments are
conducted: one to validate the efficacy of the
similarity metric when comparing a static network to
a randomly modified version of the same network and
another which demonstrates the effects on similarity
of a gradually changing social network.

3.1. Random network modification
experiment

In this experiment, a series of modifications is
applied to a second, initially identical network
(identified as "network 2") to slowly modify it in
specific ways to determine the resultant similarity
value. Over a period of 288 iterations, the following
modifications are applied to alter the network. Firstly,
at each iteration, a random increment or decrement
operation is selected at random (50% chance of each).
If the action is to decrement, the link strength is
decremented by a random amount between one and 15.
If the strength goes below zero, the link is removed. If
the action is to increment, two nodes are selected at
random. If a link currently exists between them, the



strength is incremented by a random amount between
one and 15. If a link does not exist, a new one is
created with strength between one and 15. Secondly,
every 30 iterations a node is dropped from the
network, meaning that all connected links are
removed. This missing node is not included in any of
the node-matching or clustering ratio calculations for
the similarity metric, so this action will eventually
force network 2 to be completely different from
network 1 (similarity is zero since there are no
common nodes or links)

Since each random change may result in either an
increase or a decrease in similarity, the sampled
changes are sorted by decreasing similarity value in
the figure 2 plots below. These plots demonstrate that
the metric can span its full range depending on the
changes made to the network.
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Figure 2. Impact of random network modifications
to similarity metric and associated components
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During the experiment, intermediate networks at
similarity values close to 0.75 and 0.50 are captured
and examined to see how they differ from the original
network. Table 1 summarizes the differences in the
node clustering.

Table 1. impact of random network modifications
to network 2 node clustering

Cluster
Seed

Network
Nodea1.16.

0.76
Network
Nodes

0.50
Network
Nodes

cl 1-5 1-3, 24 1, 6, 10, 16
c2 6-10 6-10, 14-15 7-9, 15

c3 11-15 4-5, 12-13 4-5 12, 14,,
19, 21-22, 25

c4 16-20 16-20
3, 11, 17-18,

20, 23
c5 21-25 11, 21-23, 25 2, 24

The structural clustering difference can also be
seen in figure 3 (split into figures 3a and 3b) where the
interior of each node has the original cluster color and
the exterior of each node has the new clustering
assignment. The width of each link is proportional to
its strength and the size of each node is proportional to
the strength of the links connected to it.

Figure 3a. Network 2 at similarity value 0.76
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Figure 3b. Network 2 at similarity value 0.50

3.2. Gradual change of a social network

For this experiment, the same node clusters shown
in figure 1 are preserved as the underlying "ground
truth" clustering and each node is assumed to be a
person in a social network. From this seed network,
all possible in-cluster and cross-cluster links are
defined. A series of networks are then generated
where the link structure is maintained but the level of
weekly communication is modeled by a Poisson
process with mean two. The sparsest matrix has 60%
in-cluster communication with no cross-cluster
communication. The densest network has 100% of the
in-cluster links with 40% of the cross-cluster links
Note that all links (in- and cross-cluster) are a
progressively larger superset of the 60-0 network links
as would be (somewhat) expected in a gradually
changing network (i.e., new relationships are formed
but old relationships are not lost). For example, the 70-
30 network contains 70% of the possible in-cluster
links and 30% of the possible cross-cluster links and
holds all of the same links as the 60-20 network in
addition to several new links The 70-30 in-cluster
links include all 25 of the 60-20 network in-cluster
links as well as 5 new links and also include all 50 of
the 60-20 cross-cluster links with 25 additional links

Table 2 summarizes the number of links for each
percentage combination based on a total of 300
possible links where 50 are in-cluster and 250 are
cross-cluster. 25 different networks are generated
with link percentages ranging from 60-0 (in-
cluster/cross-cluster percentage) to 100-40.

Table 2. Number of links for each permutation of
in-cluster and cross-cluster links

In-Cluster
%

In-Cluster
Link Count

Cross- 
Cluster %

Cross-
Cluster

latak... Count
100 50 40 100
90 45 30 75
80 40 20 50
70 35 10 25
60 30 0 0

In order to do a comparison to an "average", we
chose the 70-10 permutation as a representative
network and set the strength of each link equal to the
average of 100 draws from the Poisson process
described above. For each of the 25 network
permutations, a series of 100 random instances is
generated where the link structure is preserved but the
link strength is generated from the same Poisson
process. If the strength of a link is zero for a draw, it is
considered to be nonexistent with respect to the
similarity calculation Similarly, if a node has no
associated non-zero links it is also considered to be
nonexistent with respect to the metric calculation. The
similarity metric is calculated for each randomly
generated instance to create a virtual time series of
length 2500 across all instances, grouped by network
permutation.

Since the overall goal is to create a control chart
which detects when the network has significantly
changed from the reference point, we performed a
distribution fit on the 70-10 network random draws.
We compared the fits of three possible distributions:
truncated normal, beta, and a mixture of normals. The
best fit was selected using a voting procedure based on
three model fit criteria: AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion), and
the Kolmogorov-Smirnov test. For the 70-10
similarity dataset, the best fit is a truncated normal
with mean 0.82653 and standard deviation 0.034531.
Figure 4 is the smoothed histogram of similarity
values (black dotted line) overlaid with the various
distribution fits.

Once the underlying distribution is selected, the
control chart limits can be established using the
techniques described in [27]. This involves picking a
"running length", the average number of samples from
the in-control distribution before a sample is observed
that appears to be out-of-control. In our case we
selected 75. Next, we calculate the probability limits
for the out-of-control limits. We use a = 1/(running
length) = 1/75 and probability limits = (a/2, 1-a/2) =
(1/150, 149/150). Then, using a numerical
approximation to the inverse truncated normal



distribution, we find the similarity values
corresponding to the probability limits and set as the
control chart limits.

Figure 5 illustrates the application of these control
limits to the virtual time series. The similarity values
from the 70-10 series is nearly fully encapsulated by
the control limits whereas even the small network
change to 70-20 results in the bulk of the samples
being outside of the control limits. Also of note is that
the XX-0 networks go down in similarity because they
do not have any of the cross-cluster links present in the
70-10 network structure.
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Figure 4. Selecting the best distribution fit for the
70-10 network similarity values (black dotted line)
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Figure 5. Application of control chart limits to the
full similarity of the simulated network data

When comparing our similarity metric to that
proposed by [1] the main difference is our inclusion of
the matching cluster ratio. This added information is
structural and not readily apparent by doing basic
comparisons between links and nodes. To illustrate
the value of this addition, we pulled out the matching
cluster ratio contribution to the similarity metric and
renormalized so that the new metric has value ranging
from zero to one (this is equivalent to setting the
weights on all components in equation 5 to be 1/3

except for Nfi, which is given a weight of zero). We
found that a beta distribution with shape 1 parameter
181.41 and shape 2 parameter 27.61 had the best fit,
and we used this to create control chart limits for the
modified similarity metric. The results of applying the
control chart are shown in figure 6.
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Figure 6. Application of control chart limits to
modified similarity metric with no clustering

component

There are few items to note when comparing full
similarity metric (figure 5) to similarity with no
clustering information (figure 6). Firstly, the XX_O
networks in figure 6 have a much greater deviation
from the XX_10 network similarity values as
compared to figure 5 even though their clustering is
quite similar The histogram for 90_0 in figure 7
illustrates how that network clustering structure is
actually quite similar to the 70_10 with a fixed cluster
overlap of 88% (22 out of 25 nodes matching).
Secondly, the 90_10 and 100_10 networks in figure 6
have a much larger percentage of out-of-control
samples than their counterparts in figure 5, which
shows the effect of eliminating the consideration of
clustering from the similarity metric. Though these
networks exhibit similar clustering to the 70_10
network, not including clustering causes them to
appear out-of-control more often than one would
intuitively expect. Finally, for the 60_40 network, it is
expected that the similarity should be fairly low, as
shown in figure 6, given that the cluster overlap is
typically in the 40 — 45% range as show in the figure
7 histogram. The fact that the similarity is higher in
figure 5 is also expected, since it does not include the
cluster overlap metric, which demonstrates why it's
important to include that component.
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4. Conclusion

Having a capability that can detect significant
changes within a network without being overly
reactive to smaller changes is a difficult balance to
strike, especially with a single metric. Our graph
similarity metric appears to have achieved this goal by
aggregating several graph analysis techniques in a
unique manner to produce a value that is easy to
interpret and decompose if necessary. By using our
metric in conjunction with a control chart we
demonstrated that networks which differ in small ways
will be recognized as being similar but that significant
(though not hugely dramatic) changes will still be
detected. This temporal anomaly detection could be
useful in determining if organized crime networks
have changed in some meaningful way. Though our
case study focused on social network analysis, the
metric could be equally valuable to areas such as
chemical graph theory and semantic analysis where
the clustering of similar nodes has as much or more
meaning than the simple presence or absence of
particular nodes and arcs.

One extension to this model would be to explore
how the component weights could be optimally

adjusted for specific applications. For example, if
changes in the clustering structure of the network are
more important than the presence or absence of weak
links, the matching cluster ratio could have a higher
relative weighting with respect to the other
components.

5. Acknowledgements

Special thanks to Drew Levin of Sandia National
Laboratories for acting as a sounding board when
designing the experiments and with his help creating
the network graphics. This work was supported by the
Laboratory Directed Research and Development
program at Sandia National Laboratories, a
multimission laboratory managed and operated by
National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Depaitinent
of Energy's National Nuclear Security Administration
under contract DE-NA-0003525. SAND Number:
SAND2019-xxxx C.

6. References

[1] R. Michalski, P. Brodka, P. Kazienko, and K.
Juszczyszyn, "Quantifying Social Network Dynamics", In
Proceedings of the 4th International Conference on
Computational Aspects of Social Networks, Sao Carlos,
Brazil, November 21-23, 2012, 69-74.

[2] E.A. Hobson, M.L. Avery, and T.F. Wright, "An
Analytical Framework for Quantifying and Testing Patterns
of Temporal Dynamics in Social Networks", Animal
Behavior 85, 2013, 83-96.

[3] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina,
"Web Graph Similarity for Anomaly Detectioe, Journal of
Internet Server Applications 1, 2010, 19-30.

[4] Ramdlani, G.A. Putri Saptawati, and Y. Asnar, "Graph
Analysis on ATCS Data in Road Network for Congestion
Detectioe, International Conference on Data and Software
Engineering, Palembang, Indonesia, November 1-7, 2017.

[5] P. Drieger, "Semantic Network Analysis as a Method for
Visual Text Analytics", Procedia - Social and Behavioral
Sciences 79, 2013, 4-17.

[6] Mheich, M. Hassan, V. Gripon, M. Khalil, C. Berrou, O.
Dufor, and F. Wendling, "A Novel Algorithm for Measuring
Graph Similarity: Application to Brain Networks", 7th
Annual International IEEE EIVIBS Conference on Neural
Engineering, Montpellier, France, April 22-24, 2015, 1068-
1071.



[7] M. Hernandez, A. Zaribafiyan, M. Aramon, and M.
Naghibi, "Quantum Approaches to Graph Similarity", 1QB
Information Technologies, 2016.

[8] G. Chartrand, Introductory Graph Theory, Dover, New
York, 1985.

[9] D.G. Corneil and C.C. Gotlieb, "An Efficient Algorithm
for Graph Isomorphism", Journal of the Association for
Computing Machinery 17(1), 1970, 51-64.

[10] M. Pelillo, "Replicator Equations, Maximal Cliques,
and Graph Isomorphism", Neural Computation 11(8), 1999,
1933-1955.

[11] J.R. Ullman, "An Algorithm for Subgraph
Isomorphism", Journal of the Association for Computing
Machinery 23(1), 1976, 31-42.

[12] I.L. Ruiz, M. U. Cuadrado, and M.A. Gomez-Nieto,
"New Graph Similarity Measurements Based on Isomorphic
and Nonisomophic Data Fusion and their Use in the
Prediction of the Pharmacological Behavior of Drugs",
International Journal of Pharmacological and
Pharmaceutical Sciences 1(2), 2007, 47-51.

[13] M.L. Femandez and G. Valiente, "A Graph Distance
Metric Combining Maximum Common Subgraph and
Minimum Common Supergraph", Pattern Recognition
Letters 22(6-7), 2001, 753-758.

[14] H. Bunke, X. Jiang, and A. Kandel, "On the Minimum
Common Supergraph of Two Graphs", Computing 65(1),
2000, 13-25.

[15] H. Bunke, "Error Correcting Graph Matching: On the
Influence of the Underlying Cost Functioe, IEEE
Transactions on Pattern Analysis and Machine Intelligence
21(9), 1999, 917-922.

[16] B.T. Messmer and H. Bunke, "A New Algorithm for
Error-Tolerant Subgraph Isomorphism Detectioe, IEEE
Transactions on Pattern Analysis and Machine Intelligence
20(5), 1998, 493-504.

[17] X. Gao, B. Xiao, D. Tao, and X. Li, "A Survey of
Graph Edit Distance", Pattern Analysis and Applications 13,
2010, 113-129.

[18] B. Cao, Y. Li, and J. Yin, "Measuring Similarity
Between Graphs Based on the Levenshtein Distance",
Applied Mathematics and Information Sciences 7(1L),
2013, 169-175.

[19] R. Albert and A.L. Barabasi, "Statistical Mechanics of
Complex Networks", Reviews of Modern Physics 74(1),
2002, 47-97.

[20] S. Dill, R. Kumar, K.S. McCurley, S. Rajagopalan, D.
Sivakumar, and A. Tomkins, "Self-Similarity in the Web",

ACM Transactions on Internet Technology 2(3), 2002, 205-
223.

[21] R. Michalski, T. Kajdanowicz, P. Brodka, and P.
Kazienko, "Seed Selection for Spread of Influence in Social
Networks: Temporal vs. Static Approach", New Generation
Computing 32, 2014, 213-235.

[22] E. Lagunas, A.G. Marques, S. Chatzinotas, and B.
Ottersten, "Graph Similarity Based on Graph Fourier
Distances", 26th European Signal Processing Conference,
Rome, Italy, September 2018.

[23] R.C. Wilson and P. Zhu, "A Study of Graph Spectra
for Comparing Graphs and Trees", Pattern Recognition 41,
2008, 2833-2841.

[24] D. Koutra, J.T. Vogelstein, and C.
Faloutsos"DeltaCon: A Principled Mass-Graph Similarity
Functioe, SIAM International Conference on Data Mining,
Austin, Texas, May 2013.

[25] G.S. Bopche, and B.M. Mehtre, "Graph Similarity
Metrics for Assessing Temporal Changes in Attack Surface
of Dynamic Networks", Computers and Security 64(C),
2017, 16-43.

[26] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E.
Lefebvre, "Fast Unfolding of Communities in Large
Networks", In Journal of Statistical Mechanics: Theory and
Experiment (10), 2008, P10008.

[27] D.C. Montgomery, Introduction to Statistical Quality
Control. 6th ed., John Wiley and Sons, Inc., Hoboken, New
Jersey, 2009.


