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2 I Grid Storage needs Large Format Cells

Engineering costs are significant for small format cells. Large format cells are
needed to reduce overall system costs.

Large format cells also allow for tighter integration of power electronics, sensors,
SOH monitoring at the cell level.

High Conductivity Separators
for Low Temperature Molten

Sodium Batteries
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Robust ceramic separators exhibit
low Na+ conductivity at lower,

more cost effective temperatures
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Crossover in Redox
Flow Batteries

Cross over of the electroactive
species through the separator leads
to severe capacity decay in flow

battery systems.

Zincate poisoning of Mn02 in
Zn/Mn02 Batteries
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Zincate diffusion and subsequent
poisoning of Mn02 impairs reversibility
and significantly decreases lifetimes.



'History of Rechargeable Zn-Mn02 Batteries

Early commercial products based on cylindrical formats
(Union Carbide, Rayovac, BTI, ...)
Focused on consumer markets, rapid development of Li-ion
batteries made small cell business not competitive

0 Resurgence in the field for stationary storage
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Limited Capacity
Poor Ene rgy Density
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J. Daniel-Ivad and K. Kordesch, "Rechargeable Alkaline Manganese
Technology: Past-Present-Future," ECS Annual Meeting, May 12-17,
2002
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Poor Cycle Life
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Stabilized full-
cycling M n02

2010-2014: CUNY
Ene rgy Institute
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S. Banerjee, Symposium on Grid Energy Storage, MRS Spring Meeting, 2015; G. Yadav, CUNY Energy Institute, 2018



4 Rechargeable Alkaline Zn-Mn02 Batteries
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J. Electrochem. Soc., 138
(2), 645 (1991)

J. Electrochem. Soc., 163
(9), A1836 (2016) PNAS 115 (23), E5261 (2018) Mater. Chem. Phys. 130, 39 (2011)



Limited DOD
2 e-

820 mAh/g

1000+ cycles shown under limited depth-of-discharge (DOD) conditions

20% of 1st Mn02 electron, 2.5% of total Zn

Technology has been commercialized by Urban Electric Power

-20 Wh/L, $150-250/kWh N. D. Ingale, J. W. Gallaway, M. Nyce, A. Couzis and
S. Banerjee, J. Power Sources, 276, 7 (2015).



6 I Full Utilization of 2e-

On the Mn02 Cathode
Regeneration of cathode structure on
solution/dissolution/precipitation cycle

• Formation of Inactive phases

• Reducing susceptibility to Zinc poisoning

Separator
Reduce Zincate crossover

On the Zn Anode
Control shape change

• Passivation

• Reduce dendrite formation

Need improvements in materials
utilization, process optimization and
engineering of large format cells
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Failure Mechanisms of Cathode

Mn304
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Instability of Mn(III) resulting in formation of irreversible
Mn304 and Zn poisoning forming irreversible ZnMn204



Making Mn02 Fully Rechargeable
St Cycle Complete Discharn

Union Carbide (Konlesch) : Access 5-10% for rechargeabity
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Chemistry relies on formation of a layered birnessite
Mn02 structure and stabilizing this structure for
thousands of cycles

Mn02 goes through a complete regeneration process
during each cycle

G.G. Yadav, J.W. Gallaway, D.E. Tumey, M. Nyce, J. Huang, X. Wei and S. Banerjee, Nature

Communications, vol. 8, 14424 (2017). doi:10.1038/ncomms14424
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8 1 Potential for Zn-Mn02 Cells at $50/kWh

Recent breakthroughs in making Mn02
fully rechargeable. Based on the
formation of a layered birnessite Mn02
structure and stabilizing this structure for
thousands of cycles.

• Improvement in energy density and cost
by improvement in zinc utilization

Cathode degradation mitigation by
improvements controlling Zn migration
across separator

- Potential for $50/Wh cells with high
cycle-rechargeability of Zn-Mn02
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9 Zn Anode — Increasing Cycle Life at High DOD

Pre-saturating electrolyte with ZnO can minimize dissolution and
migration of zinc from the anode

Zn/Ni(OH)2

Anode capacity = 746 rnAh/g

C/10 relative to full anode
capacity 75 MAL 2anode
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Important to account for ZnO in electrolyte for specific capacity calculation

Cells tested at —14% Zn DOD in saturated electrolyte show 149% longer cycle life than 10% Zn DOD
cells in regular electrolyte

• Cells tested at —21% Zn DOD in saturated electrolyte show 125+% longer cycle life than 20% Zn
DOD cells in regular electrolyte



io Features of a Good Zn-Mn02 Battery Separator

Mn02
Cathode

0

N

ZnMn204
(inactive)

OH-
High Ionic Conductivity
Metric: Electrochernical Irnpedance

Low Zincate Permeability 4—
Metric: Zinc Diffusion Coefficient

r Na+

•
Zn(OH)42-

Zinc Anode

A selective membrane/separator is needed that allows charge-carrying
ions through but blocks or limits Zn (zincate)



Rapid Screening Assay for Separators

Draw
Solution

5 ppm BIF
2.5 ppm Cd, Pb
KOH or NaOH

L.v )

J. Duay, et al. Electroanalysis 2017, 29, 2261-2267

Feed Solution

5 ppm Bi
2.5 ppm Cd, Pb

---Zn(OH),2 0.5% ZnO
KOH or NaOH

ASV results are similar to ICP-MS with much
shorter experimental times and no need for

dilution or pH modification

Method Dilution
Factor

Experimental
LOD

Timeframe of
Experiment

ASV (this work) 0 1.6 ± 0.6 ppm Hours

ICP-MS >300x 0.009 pprn Days
7.5 2.4 ppm*

Cornplexometric
Titration

>20x 1 pprn
96 24 pprn*

Weeks

20

15

Celgard KOH
- Cellophane KOH

Celgard NaOH
Cellophane Na01-1

o 30 60

Time (min)

90 120

10
-7

_L

I= ASV Results
Results

Ce gard Cellophane Celgard
KOH KOH NaOH

Cellophane
NaCH* LODs obtained in our lab



12 I NaSICON Ceramic Separator

NaSuper Ionic CONductor
Na1,„Zr2Six133_,(012, 0 < x < 3

Conduction channels

(P,Si)04

http://www.chemtube3d.com/solidstate/SSNASICON.htm

NaSICON purchased from Ceramatec

Battery Assembly Schematic

Ceramic monolith

30% NaOH electrolyte

100% Selective Membrane

- Conducts Na+ ions (-10-3 S/cm)
- No detectable through-separator
Zn transport

J. Duay, et al. J. Power Sources 2018, 395, 430-438. DOI:10.1016/j.jpowsour.2018.05.072.



.1 Effect on 5% DOD Cells
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At relevant discharge rates for grid
storage, the thinner 0.5 mm
NaSICON doesn't decrease DEV
significantly despite having >2.5x
lower conductivity than
conventional separators

As NaSICON is thinned and
becomes less resistive, its
advantages become more apparent,
increasing cell lifetime by 22%

J. Duay, et al. J. Power Sources 2018, 395, 430-438.



Flexible Polymeric Separators
Development of flexible polymers that allow for selective ion transport

(lower cost, higher volumetric energy density and more flexible battery assembly)

Hydroxide Diffusion Zincate Diffusion
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Alkaline Sulfide/Polysulfide Cathodes

Sulfur is known to have a high theoretical
specific capacity:

1650 mA h g-1

Soluble Sulfide Chemistry in Alkaline

+ 5H20 + 8e—

+ 4H20 + 6e-

-
S3
2
 + 3H20 + 4e—

+ 2H20 + 2e-

5HS— + 50H-

-) 4HS— + 40H-

-) 3HS— + 30H-

-) 2HS— + 20H-

0.003 V vs. SHE (1)

0.033 V vs. SHE (2)

0.097 V vs. SHE (3)

0.298 V vs. SHE (4)

Highly
Soluble

Highly
Soluble

1 11 cu

Insoluble
Precipitate

Cu&S

Empirically Derived Theoretical Performance Metrics for Solid-State Cu2S/Zn Battery

Chemical
Reduction
Equation Polysulphide Species

# of e- per S
atom

Potential vs. Zinc
(V)

Specific Capacity
(mA h g-1 s)

Specific Capacity

(111A h g-1 nos)

(1)

(2)

(3)

(4)

4

5

3

2

1.60

1.50

1.33

1.00

1.202

1.232

1.296

1.497

1340

1256

1117

838

268

251

223

168

J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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What is the mechanism of
conversion from high voltage to
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J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694



1 7 1Raman Analysis of Cu2S Charge Storage
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J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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I Cu2S Failure Mechanism

Specific Capacity (mA h g )
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Lambert, T.L.; Duay, J. Rechargeable Copper Sulfide Electrodes for Electrochernical Applications. U.S. Patent Application No. 16/054,114, filed August 2018.
J. Duay, T.N. Larnbert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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Chemical or Electrochemical Degradation?

Pausing on Charge or Discharge for 36 hours every 15 cycles

300-

100

0-,

0 25 50 75 100
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•
41•161.,.•
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- • 81%'-'4....-1,41,

• Cu25 No Rest
• Cu2S 36 Hour Rest on Discharge Every 15 Cycles
• Cu2S 36 Hour Rest on Charge Every 15 Cycles

125 150

Slow degradation from Cu2S to
CuO/Cu(OH)2 electrochemistry
is most likely chemical and not
electrochemical
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Experimental Time (h)

Faster Degredation on charge
rest suggests sulfur
disproportionation:

(2n + 1)S°+60H- —> + + 3H20

Lambert, T.L.; Duay, J. Rechargeable Copper Sulfide Electrodes for Electrochernical Applications. U.S. Patent Application No. 16/054,114, filed August 2018.

J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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Limiting the Depth of Discharge/Charge
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Summary
21

-Need for battery production on the order of
steel for use in grid storage
-Zn/Mn02 primary batteries are currently
produced cheaply at large volumes
-Zincate Concentration can extend Zinc anode
cycle life for secondary Zn batteries
-Need for separator to block Zincate from Mn02
cathode
-Polysulfide/Zn Solid-State Batteries as
alternative cheap large format Battery
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