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.1 Grid Storage needs Large Format Cells

Engineering costs are significant for small format cells. Large format cells are
needed to reduce overall system costs.

Large format cells also allow for tighter integration of power electronics, sensors,
SOH monitoring at the cell level.
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Robust ceramic separators exhibit Cross over of the electroactive Zincate diffusion and subsequent

low Na* conductivity at lower,
more cost effective temperatures
(120-180°C).

species through the separator leads
to severe capacity decay in flow
battery systems.

poisoning of MnO, impairs reversibility
and significantly decreases lifetimes.




3‘Hist0ry of Rechargeable Zn-MnQ, Batteries

> Early commercial products based on cylindrical formats
(Union Carbide, Rayovac, BTI, ...)

> Focused on consumer markets, rapid development of Li-ion
batteries made small cell business not competitive

J. Daniel-Ivad and K. Kordesch, “Rechargeable Alkaline Manganese

> Resurgence in the field for stationary storage Technology: Past-Present-Future,” ECS Annual Meeting, May 12-17,
2002
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S. Banerjee, Symposium on Grid Energy Storage, MRS Spring Meeting, 2015; G. Yadav, CUNY Energy Institute, 2018




.| Rechargeable Alkaline Zn-MnOQO, Batteries

i Energy density of primary cell: up
820 mAh/g to 400 Wh/L or 150 Wh/kg
2e
616 mAh/g
Anode Issues
* Passivat ucture breakdown
* Shape 1ase(s) formed
* Dendritc ning

J. Electrochem. Soc., 138 J. Electrochem. Soc., 163
(2), 645 (1991) (9), A1836 (2016) PNAS 115 (23), E5261 (2018) Mater. Chem. Phys. 130, 39 (2011)




;| Limited DOD L
2e " '
820 mAh/g

* 1000+ cycles shown under limited depth-of-discharge (DOD) conditions
* £20% of 15t MnO, electron, < 2.5% of total Zn
» Technology has been commercialized by Urban Electric Power

- ~20 W h/L, $1 50'250/kW h N. D. Ingale, J. W. Gallaway, M. Nyce, A. Couzis and

S. Banerjee, J. Power Sources, 276, 7 (2015).




Full Utilization of 2e¢-

Zn-MnO,
On the MnO, Cathode [ 616 man/g |
> Regeneration of cathode structure on MnO, S
solution/dissolution/precipitation cycle Mno, zn

ZnO

Separators

> Formation of Inactive phases
> Reducing susceptibility to Zinc poisoning

Separator
o Reduce Zincate crossover

Mn(OH), Zno

On the Zn Anode
> Control shape change r X
o Passivation x=079"4— @-MnOOH (7
o Reduce dendrite formation ] =
x=1.33|— Mn,0O,
ZnMn,0,

Need improvements in materials
utilization, process optimization and
engineering of large format cells

?

s
formation regime

Failure Mechanisms of Cathode

Instability of Mn(III) resulting in formation of irreversible
Mn,0, and Zn poisoning forming irreversible ZnMn,O,




7‘ Making MnQ, Fully Rechargeable

13t Cycle Complete Discharge
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> Chemistry relies on formation of a layered birnessite
MnO, structure and stabilizing this structure for
thousands of cycles

@ Ford Motors
@ Union Carbide

o @ CUNY Advanced MnO,
o

> MnO, goes through a complete regeneration process
during each cycle

Battery Conditions:

Rate=1C
Anode: NiOOH

Discharge Capacity(mAh/g)

G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J. Huang, X. Wei and S. Banerjee, Nature
Communications, vol. 8, 14424 (2017). doi:10.1038/ncomms 14424 or 7
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MnO, cycling data against reference anode




Potential for Zn-MnQO, Cells at $50/kWh

Recent breakthroughs in making MnO, 350
fully rechargeable. Based on the

formation of a layered birnessite MnO,
structure and stabilizing this structure for 250
thousands of cycles.
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Improvement in energy density and cost
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Cathode degradation mitigation by
improvements controlling Zn migration 50
across separator

Potential for $50/Wh cells with high
cycle-rechargeability of Zn-MnO,
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»1Zn Anode — Increasing Cycle Life at High DOD

Pre-saturating electrolyte with ZnO can minimize dissolution and
migration of zinc from the anode

35 T T T
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Anode capacity = 746 mAh/g

C/10 relative to full anode
capacity =75 mA/g,, e

Excess Ni(OH),
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5 7 M. Lim et al.
. unpublished results

Zn DOD (Relative to All Zn+Zn0O) (%)

g b e o
0 50 100 150 200 250 300

Cycle Number

* Important to account for ZnO in electrolyte for specific capacity calculation
*  Cells tested at ~14% Zn DOD in saturated electrolyte show 149% longer cycle life than 10% Zn DOD
cells in regular electrolyte

*  Cells tested at ~21% Zn DOD in saturated electrolyte show 125+% longer cycle life than 20% Zn
DOD cells in regular electrolyte




» IFeatures of a Good Zn-MnO, Battery Separator

High Ionic Conductivity

Metric: Electrochemical Impedance

Zinc Anode

Low Zincate Permeability
Metric: Zinc Diffusion Coefficient

Zn(OH),*

ZnMn,0,
(inactive)

A selective membrane/separator is needed that allows charge-carrying
ions through but blocks or limits Zn (Zincate)




y ‘ Rapid Screening Assay for Separators

J. Duay, et al. Electroanalysis 2017, 29, 2261-2267 20k 1 ggl[lgoabrr?aiglzDH
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ASV results are similar to ICP-MS with much
shorter experimental times and no need for
dilution or pH modification

@ ASV Results
@ ICP-MS Results
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12‘ NaSICON Ceramic Separator

NaSuper Ionic CONductor Battery Assembly Schematic
Na, Zr,S1,P;_ O, 0 <x <3

Ceramic monolith

Conduction channels

O m = = o =
1

http://www.chemtube3d.com/solidstate/SSNASICON.htm

30% NaOH electrolyte
NaSICON purchased from Ceramatec

100% Selective Membrane

- Conducts Na* ions (~10-3 S/cm)
- No detectable through-separator
Zn transport

J. Duay, et al. J. Power Sources 2018, 395, 430-438. DOI:10.1016/j.jpowsour.2018.05.072.



B‘ Effect on 5% DOD Cells
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14‘ Flexible Polymeric Separators

Development of flexible polymers that allow for selective ion transport
(lower cost, higher volumetric energy density and more flexible battery assembly)
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) ‘Alkaline Sulfide/Polysulfide Cathodes

Sulfur 1s known to have a high theoretical
specific capacity:

1650 mA h g!

Soluble Sulfide Chemistry in Alkaline

SZ~ + 5H,0 + 8e~ — 5HS™ + 50H~ 0.003 Vvs.SHE (1)
S2~ + 4H,0 + 6e~ — 4HS™ + 40H~ 0.033 Vvs.SHE (2)
S2~ + 3H,0 + 4e~ — 3HS™ + 30H™ 0.097 Vvs.SHE (3)

S2~ + 2H,0 + 2e~ - 2HS™ + 20H™ 0.298 Vvs.SHE (4)

Empirically Derived Theoretical Performance Metrics for Solid-State Cu,S/Zn Battery

Chemical
Reduction # of e per S Potential vs. Zinc  Specific Capacity Specific Capacity
Equation Polysulphide Species atom V) mAhg!y) mAhg! )
(D) S5 1.60 1.202 1340 268
(2 Sy 1.50 1.232 1256 251
3) S3~ 1.33 1.296 1117 223
4) Sy~ 1.00 1.497 838 168

J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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Specific Capacity (mAhg Cuzs)

Cu,S Cathodes
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J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694



) ‘Raman Analysis of Cu,S Charge Storage
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|

LB




Voltage vs. Zinc (V)

) ‘CuZS Failure Mechanism
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Lambert, T.L.; Duay, J. Rechargeable Copper Sulfide Electrodes for Electrochemical Applications. U.S. Patent Application No. 16/054,114, filed August 2018.

J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694



) ‘Chemical or Electrochemical Degradation?
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Faster Degredation on charge

rest suggests sulfur
disproportionation:

(2n + 1)S°+60H™ — 252~ + S0%~ + 3H,0

Lambert, T.L.; Duay, J. Rechargeable Copper Sulfide Electrodes for Electrochemical Applications. U.S. Patent Application No. 16/054,114, filed August 2018.
J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694




} ‘Limiting the Depth of Discharge/Charge
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-Limiting the DOD does not improve cycle life
-Addition of Sulfide slows Sulfur to Oxide redox chemistry
-Limiting the DOC does improve cycle life

J. Duay, T.N. Lambert et al. J. Electrochem. Soc. 2019 volume 166, issue 4, A687-A694
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Summary

-Need for battery production on the order of
steel for use 1n grid storage

-/n/MnQO, primary batteries are currently
produced cheaply at large volumes

-Z1incate Concentration can extend Zinc anode
cycle life for secondary Zn batteries

-Need for separator to block Zincate from MnO,
cathode

-Polysulfide/Zn Solid-State Batteries as
alternative cheap large format Battery
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Thank you




