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Motivation

■ Additive manufacturing of energetic
materials can be used to create
multilayer structures with different
explosive materials

■ Potential to control detonation properties

■ Lots of unknowns in how detonation
propagates in multi-material systems

■ Not a simple rule of mixtures...

■ Effects of mixing length scale?

■ Effects of non-ideal interfaces?
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[1] Anderson et al., Combustion and Flame (2014)



Physical Vapor Deposition as a Model
System
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• Uses pure explosives that have existing equation of state information
and near-failure performance data

• Excellent geometric control

• PETN and HNS chosen for large difference in detonation velocity

• Parylene C interlayers added to mitigate stress-induced delamination



Thin Film Critical Thickness Experiments
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Photograph of an optical fiber probe with
inset showing a six-around-one connector.
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Example oscilloscope data and resultant position vs. time
plot used to determine detonation velocity.
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Photograph of an optical fiber probe lid
on a deposited explosive film. Fibers
are illuminated to show their locations.



Simulations

• Preliminary continuum 2D
simulations of multilayer
samples performed in CTH

• Arrhenius reactive burn (ARB)
model used

• ARB has been shown to work
reasonably well for small-
grained, pure explosives [2]

• ARB parameters for PETN and
HNS manually fit to detonation
velocity and failure thickness
data for vapor-deposited films

• 1 micron mesh resolution
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[2] Kipp and Setchell, 9th Symposium (International) on Detonation (1989)



Multilayer Detonation Velocities
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• PETN films detonate at 7.3 - 7.6 mm/µs and fail to detonate below - 90 pm

• HNS films detonate at 6.4 - 6.6 mm/µs and fail to detonate below - 205 pm



Multilayer Detonation Velocities
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• Detonation velocities in multilayer explosive films are much Iower than
expected for fairly large layer spacings (- 6.8 - 6.9 mm/ius)

• Why doesn't PETN dominate detonation velocity? Due to interfacial effects?



Interfacial Effects: Bilayer Experiments
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• HNS underlayer appears to have little effect at large PETN thicknesses

• Substantial deviation in detonation velocity at smaller PETN thicknesses

• Likely controlled by microstructure/roughness around the interface

• HNS underlayer allows detonation to be sustained at smaller PETN
thicknesses



Preliminary Simulations

• Roughness at interfaces
included

• "Initiating layer" clearly
visible in central HNS layer

• Simulated detonation
velocity: 7.44 mm/ps

Much faster than
experiments

• May need better mesh
resolution and/or 3D to
capture effects of interface
roughness
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Detonation Front Shape

Streak camera image of detonation
breakout from a multilayer film.
(Cropped to - 800 pm x 400 ns)
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• Preliminary experiments using a
streak camera to image
detonation breakout in multilayer
films (detonation self-light)

• Some evidence of "initiating
layer" between PETN and HNS

• Future work: Use flash material
to provide brighter, more uniform
illumination to allow for better
temporal resolution



Conclusions

■ Detonation velocities in PETN/HNS multilayers are
significantly lower than expected

■ Experiments with bilayer samples suggest this is due to
interfacial effects
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■ Preliminary 2D continuum simulations qualitatively capture
"initiating layer" but overpredict detonation velocity

■ Future work
■ Additional bilayer experiments — vary interface roughness, effect of

Parylene C interlayer

■ Simulations — mesh studies, mesoscale, 3D
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Multilayer Delamination

3000pm
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■ Delamination occurs when HNS
is deposited onto PETN layers

■ Fracture generally occurs within
the PETN layer, not at the
PETN/HNS interface

■ Appears to be related to
residual stresses from the
deposition process



ARB Calibration Process
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• Fitting parameters: activation energy
(AT) and exponential pre-factor
(frequency factor, FF)

• Generate FF and AT values that
capture observed critical detonation
thickness (± 0.01 eV, 116 K) and
perform a quadratic fit (as shown)

• Judgement call to decide if simulation
is long enough to observe detonation
failure

• Eliminates 1 degree of freedom in
parameterization

Must stay on this curve to get the failure thickness correct, then we can vary FF
to match the detonation velocity at a propagating thickness



ARB Calibration Process
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• Plot predicted detonation velocity for various FF values (while also varying
AT per the previous slide to correctly capture the critical thickness)

• We choose a FF of about 5e10 s-1 to match experimental detonation
velocities for both PETN and HNS


