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Motivation rh) e

= Additive manufacturing of energetic
materials can be used to create
multilayer structures with different
explosive materials

= Potential to control detonation properties

TN
= Lots of unknowns in how detonation 5mm
10 29

propagates in multi-material systems
= Not a simple rule of mixtures...
= Effects of mixing length scale? Fast Explosive
= Effects of non-ideal interfaces?

Initiating layer

Slow Explosive
Detonation
propagation

[1]1 Anderson et al., Combustion and Flame (2014)



Physical Vapor Deposition as a Model ) i
System

Substrate rotation HNS, ~70 um

© ParyleneC, 1—2 pm-

= Cu cooling block PETN, ~140 pm
Substrate P&F’*@H&Hﬁ'ﬂﬂ‘l‘
Shadow mask ’
HNS, ~140 pm
Parylene-C;1=2-pm-
Deposition Sources Parylene-C-t—2-pm-
HNS, ~70 um

= Uses pure explosives that have existing equation of state information
and near-failure performance data

= Excellent geometric control
= PETN and HNS chosen for large difference in detonation velocity
= Parylene C interlayers added to mitigate stress-induced delamination




Thin Film Critical Thickness Experiments (&=,

Photograph of an optical fiber probe with
inset showing a six-around-one connector.
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plot used to determine detonation velocity.




Simulations )

HNS Velocity vs. Thickness
= Preliminary continuum 2D B
simulations of multilayer 3
. E
samples performed in CTH 2 T a—
_g 3 xperimenta
= Arrhenius reactive burn (ARB) = e
model used 0
= ARB has been shown to work Film Thickness, um
reasonably well for small- PETN Velocity vs. Thickness (New)
grained, pure explosives [2] ’
= ARB parameters for PETN and .
HNS manually fit to detonation Es
velocity and failure thickness z, P —
data for vapor-deposited films R -&Calibrated Model
. 1 micron meSh reSOIUtion 060 20 100 120 140 160 180 200
Film Thickness, um

[2] Kipp and Setchell, 9t Symposium (International) on Detonation (1989)
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Multilayer Detonation Velocities
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= PETN films detonate at 7.3 — 7.6 mm/us and fail to detonate below ~ 90 um
= HNS films detonate at 6.4 — 6.6 mm/us and fail to detonate below ~ 205 um
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Multilayer Detonation Velocities
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= Detonation velocities in multilayer explosive films are much lower than
expected for fairly large layer spacings (~ 6.8 — 6.9 mm/us)

= Why doesn’t PETN dominate detonation velocity? Due to interfacial effects?
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Interfacial Effects: Bilayer Experiments
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= HNS underlayer appears to have little effect at large PETN thicknesses
= Substantial deviation in detonation velocity at smaller PETN thicknesses
= Likely controlled by microstructure/roughness around the interface

= HNS underlayer allows detonation to be sustained at smaller PETN

thicknesses



Preliminary Simulations h .

Pressure att= 0.00 ns L
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= Roughness at interfaces i
iIncluded g 40
> 300 =
114 LR . I 200 E 10°
= “Initiating layer” clearly 100 «
. . . 0 10~
visible in central HNS layer : o8 - 8 2
= Simulated detonation
velocity: 7.44 mm/us
— Much faster than
. Reactionatt= 0.00 ns
eXperlmentS 700 — ‘ . — — — : Reaction
600 -
= May need better mesh . 2 ;-
resolution and/or 3D to = s o
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Position

Detonation Front Shape

Streak camera image of detonation
breakout from a multilayer film.
(Cropped to ~ 800 um x 400 ns)
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Preliminary experiments using a
streak camera to image
detonation breakout in multilayer
films (detonation self-light)

Some evidence of “initiating
layer” between PETN and HNS

Future work: Use flash material
to provide brighter, more uniform
illumination to allow for better
temporal resolution




Conclusions )

= Detonation velocities in PETN/HNS multilayers are
significantly lower than expected

= Experiments with bilayer samples suggest this is due to
interfacial effects

= Preliminary 2D continuum simulations qualitatively capture
“Iinitiating layer” but overpredict detonation velocity

= Future work

= Additional bilayer experiments — vary interface roughness, effect of
Parylene C interlayer

= Simulations — mesh studies, mesoscale, 3D
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Multilayer Delamination ) .

= Delamination occurs when HNS
Is deposited onto PETN layers

= Fracture generally occurs within
the PETN layer, not at the
PETN/HNS interface

= Appears to be related to
residual stresses from the
deposition process




ARB Calibration Process o,

HNS Threshold Calibration @ 205.3 um
0 nkasdl "= Fitting parameters: activation energy

R§2§Z§” (AT) and exponential pre-factor

(frequency factor, FF)

= Generate FF and AT values that
capture observed critical detonation
thickness (£ 0.01 eV, 116 K) and
perform a quadratic fit (as shown)

LOG10(AT)
=
L

= Judgement call to decide if simulation
is long enough to observe detonation
failure

-0.5
Larger
0.6 Reaction
A Zones 4

LOG10(FF)
» Eliminates 1 degree of freedom in
parameterization

Must stay on this curve to get the failure thickness correct, then we can vary FF
to match the detonation velocity at a propagating thickness




ARB Calibration Process
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HNS Velocity Calibration @ 246.5 um
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PETN Velocity Calibration (New) @ 100.7 um

o
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= Plot predicted detonation velocity for various FF values (while also varying

AT per the previous slide to correctly capture the critical thickness)

= We choose a FF of about 510 s™! to match experimental detonation
velocities for both PETN and HNS




