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•
Classic approach to neutron imaging

Fast neutron directions and energies
constrained by double scatter geometry

scintillator
detectors

incoming
neutron
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Single-volume approach

• Two planes —> single volume
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Single-Volume Scatter Camera (SVSC)

• Two configurations:
Monolithic scintillator (reconstruct
positions and times from
isotropically emitted photons)

Optically segmented scintillator
(photon propagation constrained
within specific channel)

• Prototyping underway in
concert with component
development
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Proton light yield

• To calculate incoming neutron angle

we must know the mapping between

measured light and proton recoil

energy (Ep), called the relative

proton light yield relation (PLY)

• Previously measured PLY for the OS-

SVSC candidate scintillators EJ-200,

EJ-204, EJ-208: see Laplace, et al.

NIM A (2018)

• Presented here: PLY for EJ-230, EJ-

2321 and EJ232Q

d10

scattered
neutron with E„

du, and t10 : distance and time
between first two scatters

incoming
neutron with En

recoiling N.N.
proton with;

En = Ent + Ep
2

En,)
En, = 

2 
—
1 
m„ (—d1o) , 0 = arccos En

tio

Material

I EJ-230
EJ-232

EJ-232Q*

Scintillation Efficiency Rise Time Decay Time

(photons/MeVee) (ps) (ns) 

9700 500 1.5

8400 350 1.6

2900 110 0.7

Commercial

Equivalents

BC-420

BC-422, NE-111A

BC-422Q

* 0.5% Benzophenone. Evealy, et al. NIM A 927 (2019).



D-Breakup neutron source
Ne

ut
ro

ns
/µ

C/
Sr

/M
eV

 

109

108

41
A

••••••....

►

2 4 6 8 10 12 14 16 18 20 22

Neutron Energy (MeV)

• r

CAVE 02

Photomi

CAVE 011
Beam Box '

In
tron
itor

1+7

reakup Target

Bending Magnet

Switching Magnet

Fast
Faraday

Cup

EAST
ALLEY

VAULT

2

K.P. Harrig , B.L. Goldblum, et al., Nucl. lnstrum. Meth. (2017).



• PLY measurements at UCB/LBNL 

Beam time supported via collaboration
with the Nuclear Data Group in the

Nuclear Science Division at LBNL through
US DOE-SC

Broad spectrum
beam allows for

continuous
measurement of
proton light yield

relation

Li
gh
t 
Yi

el
d 
[
M
e
v
e
e
]
 

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

00
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Proton Energy [MeV]

lo'

10

1

Kinematically over-
constrained system
provides systematic

check

rrrrrrr II

Ep= tan2

E =En sin2

E =En —EnJ.A. Brown, PhD Thesis, UC Berkeley 2017.

J.A. Brown, et al. Journal of Applied Physics 124, 045101 (2018).



PLY results
• EJ-23x results

consistent with those
of EJ-20x, w iciehn
the same polymer
base and havve Ri?a-12
deri5ities, Ctl-lrEct4c232(

• EJ-210 rcsult
dis.e,rees=with
prewous literature
me•gurement

• Relaive proton light
yields for 2-inch and ._41
1-inc1lDEletts a re wit*

i-•-.
error = ,ir,

Laplace, et al. NIM A (2018).
Pozzi, et al. NIM A 524 (2004).
Ens vist et al. NIM A 715 2013
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Single bar characterization
• To resolve two separate

interactions (and to calculate 0),
we need excellent position/time
resolutions

• X, Y positions determined by
pixilation from array geometry

• Z position reconstructed via one of
two methods:

Difference in time-of-arrival
- Log ratio of total charge
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. 
Single bar measurements

@SNL

• Tagged Na-22 scan
• Trigger is on 5x5x5 mm Stilbene

crystal (no threshold effects on
test bar)

• Provides timing, z-position, and

energy resolution measurements

Lead collimator

w/90Sr source on

movable stage

SensL J-series

SMA evaluation

4. boards

@UH
• Collimated Sr-90 scan
• Trigger is on one end of test bar
• Provides z-position and energy

resolution measurements
• Double bar measurements provides

limited timing measurements

Combination provides cross check and critical systematic errors

.



UH (Timing based)

SNL (Timing based)

UH (Amplitude based)

SNL (Amplitude based)

UH (Combined)

SNL (Combined)



First OS prototype at UH-Manoa
Summary.
• Photodetector: SensL J-series
6x6mm with FOUT

• Readout electronics and trigger:

drs4-based from UH

• Scintillator: 5x5x200 mm EJ-204

bars, Teflon-wrapped

Status:
• All components are assembled
• Electronics testing underway
• Next up is first light (!) and

calibrations

Photo credit: Nathan Kaneshige



0S-WSC simulation development

• Component characteristics like PLY
affect 0S-WSC performance

• Goal: in simulation space,
understand sensitivity of 0S-SN/SC
imaging capabilities to device
characteristics (scintillator
material properties, electronics,
device dimensions, etc.)

• Lessons from simulation future
prototype development

• Goal: create ROOT/C++ framework
that can analyze both simulation
data and experimental data from
the OS prototype
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Example: does PLY matter?

• In simulation, we assume a
"true" PLY to generate light
from proton recoils

• Then, analyze data using
either the "true" PLY or a
"trial" PLY from the
literature to calculate the
recoil energy

— "True": Laplace, NIM 2018.
— "Trial": Pozzi, NIM 2004.

• The final backprojected
images show a clear impact
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Example: does PLY matter? Yes!

Polar projection

• FWHM

— "Trial" = 14.4°

— "True" = 9°

• Using the wrong PLY

results in a 60%

increase in width and a

centroid shift 1°

Azimuthal projection:

• FWHM

— "Trial" = 41.6°

— "True" = 20.1°

• Using the wrong PLY
results in a 107%
increase in width
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Future work

• Big picture: develop 4 prototype 4 evaluate 4 develop ...

• Modeling study @UCB/SNL to determine the best path
forward for imaging:

• How do timing, position, PSD, energy resolution, and threshold map
to imaging metrics such as resolution, contrast, artifacts, etc. for a
given source and acquisition time?

• For OS specifically: how do imaging metrics change with source
position?

• Absolute LY measurements of candidate scintillators

• Next OS Prototype coming in FY 2020
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Design Considerations - Photodetectors

We want segmented, fast, linear and robust:

[Technology Manufacturer/Part Rise Time Pulse Width Peak

Photonis Planacon XP85012 0.6 ns  1.8 ns <25%MCP-PMT

MCP-PMT lncom LAPPD (see poster)

SiPM

1 ns —14%

SensL C/J-series 8x8 array 0.3-1 ns T 0.6-3 ns 35/50%

4.--,..='"d4 4145,44. ...Cu 4

Tommmoor



Design Considerations - Electronics
We want high sampling rate or fast analog, low

threshold, 128-channel solution:

• Current UH electronics: drs4-based

• Commercial analog solutions from PET

• Not for first prototype: we want

waveforms to learn about event topology

• Frequency Domain Multiplexing

• R&D underway @NCSU
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See: M. Mishra, J. Mattingly, J. M. Mueller, and R. M. Kolbas "Frequency domain
multiplexing of pulse mode radiation detectors" Nucl. Instr. And Meth. A 902 (2018)
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Comparison to literature

• EJ-230 results disagree with previous measurement of
commercial equivalent

• Potential issue with Pozzi results: multiple scattering
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Single Bar Results - Summary

Scintillator crt (Ps)
a mm) o-E 1 E (%)

2 2 Na
9' S r 22 Na 137Cs

EJ-200, bare 155+2 13.35 14,27 16.7 14.1
Teflon 154   1  3 10.29 7.65 14.5 15.8
ESR 145   1  3 11.14 12.09 16.6 12.2

EJ-204, bare 136+3 10.08 10.67 15.7 14.7
Teflon 142+2 8.06 6.54 13.1 14.3 4
ESR 125+3 8.59 9.64 17.6 12.2

EJ-230‘ bare 141+3 9.61 8.86 17.8 15.0
Teflon 142+2 8.39 6.32 22.6 13.9
ESR 156+3 10,17 8.52 23.4 13.0

EJ-276. bare 183+5 12.13 13.51 17.8 14.1
Teflon 171   1  2 9.29 9.54 16.5 14.1
ESR 177+4 11.65 10.45 15.0 11.3

Syst. error 1  7 10.73  1  0.42 13.5 -

= mn (AdY
2 At

En - En, + Ep

Also, highest light

output
• Lowest possible

threshold to optimize
detection of fission
energy neutrons

• Estimate 30 keVee with 7
mV electronics threshold

See: M. Sweany, A. Galindo-Tellez, J. Brown, E. Brubaker, R. Dorrill, A. Druetzler, N.
Kaneshige, J. Learned, K. Nishimura, and W. Bae. "Interaction position, time, and energy
resolution in organic scintillator bars with dual-ended readout" Nucl. Instr. And Meth. A
927 (2019) 451-462



Efficiency calculations

Compact high-efficiency
neutron imager:
• High efficiency reduces

measurement time

• Compact form factor allows
easy transport, deployment
in tight spaces, close
approach to threat sources.

• Application spaces:
— SNM search/standoff

detection

— Cargo screening

— Arms control

— Emergency response

Efficiency comparison
Proposed SVSC

- Two scatt rs in SVSC

Hydrogen scatter

Min 200 k V H scatters

Current NSC

Front & rear scatters

  On hydrogen

---- Above 200 keV

0 2 4 6 8 10 12 14 16 18 20
Min separation of two first interactions (cm)

If successful:
• Spectroscopic capability
• Good per-event angular resolution
• High efficiency
• Compact form factor



Proton recoil energy vs. light yield (EJ-230)
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Light-yield fitting (EJ-230
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