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Classic approach to neutron imaging

Fast neutron directions and energies ;
constrained by double scatter geometry mg

scintillator




Single-volume approach
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Single-Volume Scatter Camera (SVSC)

Monolithic

Two configurations:

— Monolithic scintillator (reconstruct
positions and times from
isotropically emitted photons)

Optically segmented scintillator

(photon propagation constrained
within specific channel)

Prototyping underway in
concert with component

development | >
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Proton light yield

To calculate incoming neutron angle incoming

we must know the mapping between neutron with E,
measured light and proton recoil 7\
energy (E,), called the relative s 93 ok LI
proton light yield relation (PLY) ]
Previously measured PLY for the OS- /’ scattered
SVSC candidate scintillators EJ-200, neutron with £,

EJ-204, EJ-208: see Laplace, et al. recoiling ~~_ |

NIM A (2018) d;pand t;,: distance and time proton with £,
between first two scatters

Presented here: PLY for EJ-230, EJ- E, =2 Ev +Ep
232, and EJ232Q En,z_mn(@o> 9:( 2

cone axis

2 th

Material Scintillation Efficiency Rise Time Decay Time  Commercial
(photons/MeVee) (ps) (ns) Equivalents
EJ-230 9700 500 1.5 BC-420
EJ-232 8400 350 1.6 BC-422, NE-111A
EJ-232Q" 2900 110 0.7 BC-422Q

* 0.5% Benzophenone. Sweany, et al. NIM A 927 (2019).
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K.P. Harrig , B.L. Goldblum, et al., Nucl. Instrum. Meth. (2017).




PLY measurements at UCB/LBNL
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Beam time supported via collaboration G\ /\l A
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with thg Nuclezi\r.D.ata Group in the
Nuclear Science Division at LBNL through

US DOE-SC

Broad spectrum
beam allows for
continuous
measurement of
proton light yield
relation

E, =E, tan" 6

Kinematically over-

constrained system . B
— _

© provides systematic Ep — En SIn 9

check

1
e G, J.A. Brown, PhD Thesis, UC Berkeley 2017. P n n
Sroton Energy MeV] J.A. Brown, et al. Journal of Applied Physics 124, 045101 (2018).

Light Yield [MeVee]




PLY results

 EJ-23xresults
consistent with those
of EJ-20x; wplcrtsyﬂé%
the same polymer
base and have it — EJ-232Q, 254 om
densities, C/H rElo?32( — EJ-232Q,5.08 cm
EJ-220 result
disggrees with
pré@ous titerature
megsurement

—
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Relative light yield

Relative proton light
yields for 2-inch and _, 44
1-inchOcelis are withga

error | e

=

Laplace, et al. NIM A (2018).
Pozzi, et al. NIM A 524 (2004).
Enqvist, et al. NIM A 715 (2013).




Single bar characterization

To resolve two separate -
interactions (and to calculate 8), neutron with £,
we need excellent position/time

resolutions

X, Y positions determined by -

pixilation from array geometry " scattered

neutron with £,

Z position reconstructed via one of .
recoiling "~

two methods: d,pand 1, distance and time proton with E, L/
= Difference in time-of-arrival between first two scatters E, = Ew + E,

2
E, = lmn (@) ,0 = arccos (




Single bar measurements

Lead collimator
w/°°Sr source on
= movable stage

@SNL

» Tagged Na-22 scan  Collimated Sr-90 scan

* Trigger is on 5x5x5 mm Stilbene * Trigger is on one end of test bar
crystal (no threshold effects on * Provides z-position and energy
test bar) resolution measurements

* Provides timing, z-position, and * Double bar measurements provides
energy resolution measurements limited timing measurements

Combination provides cross check and critical systematic errors




Single bar measurements

Position Resolution

] UH (Timing based)
SNL (Timing based)
UH (Amplitude based)
SNL (Amplitude based) |
UH (Combined)
SNL (Combined)
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First OS prototype at UH-Manoa

Summary:

* Photodetector: SensL J-series
6x6mm with FOUT

* Readout electronics and trigger:
drs4-based from UH

* Scintillator: 5x5x200 mm EJ-204
bars, Teflon-wrapped

-
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Status:

* All components are assembled

* Electronics testing underway

* Next up is first light (!) and
calibrations

Photo credit: Nathan Kaneshige



OS-SVSC simulation development

Component characteristics like PLY
affect OS-SVSC performance

Goal: in simulation space,
understand sensitivity of OS-SVSC
imaging capabilities to device
characteristics (scintillator
material properties, electronics,
device dimensions, etc.)

Lessons from simulation = future
prototype development

Goal: create ROOT/C++ framework
that can analyze both simulation
data and experimental data from B .

the OS prototype S T
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Example: does PLY matter?

* Insimulation, we assume a
“true” PLY to generate light
from proton recoils

* Then, analyze data using
either the “true” PLY or a
“trial” PLY from the
literature to calculate the
recoil energy

— “True”: Laplace, NIM 2018.
— “Trial”: Pozzi, NIM 2004.

* The final backprojected
images show a clear impact
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Example: does PLY matter? Yes!

Polar projection 2 L Trial PLY

e FWHM 1: True PLY
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Future work

* Big picture: develop = prototype > evaluate = develop ...
* Modeling study @UCB/SNL to determine the best path
forward for imaging:

 How do timing, position, PSD, energy resolution, and threshold map
to imaging metrics such as resolution, contrast, artifacts, etc. for a
given source and acquisition time?

 For OS specifically: how do imaging metrics change with source
position?

e Absolute LY measurements of candidate scintillators
* Next OS Prototype coming in FY 2020
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Design Considerations - Photodetectors

We want segmented, fast, linear and robust:

Technology

Manufacturer/Part

Rise Time

Pulse Width

Peak PDE

MCP-PMT

Photonis Planacon XP85012

0.6 ns

1.8 ns

<25%

MCP-PMT

Incom LAPPD (see poster)

1ns

~14%

SiPM

SensL C/J-series 8x8 array

0.6-3 ns

35/50%




Design Considerations - Electronics

We want high sampling rate or fast analog, low
threshold, 128-channel solution:

* Current UH electronics: drs4-based —

* Commercial analog solutions from PET o —— ,

* Not for first prototype: we want s ~yaluation Board {ENNN

") C C CH%
waveforms to learn about event topology _ é ﬁ
* Frequency Domain Multiplexing i

PAUL SCHERRER INSTITUT
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fl { l}etg ctor numbﬁerﬂ
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D?tgctqr 2 £ i Fan-in -|D|g|{:|;er | - I Charge collected |
Detector 3 |—d Nesonator '|Tkme-0f-arrival
fa

See: M. Mishra, J. Mattingly, J. M. Mueller, and R. M. Kolbas “Frequency domain

multiplexing of pulse mode radiation detectors” Nucl. Instr. And Meth. A 902 (2018)
117-122




Comparison to literature

e EJ-230 results disagree with previous measurement of
commercial equivalent

* Potential issue with Pozzi results: multiple scattering

E =5MeV
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Single Bar Results - Summary

S il
Scintillator | oy (ps) 22&; (11111;13 S5 th?a/ L 1(3§235
EJ-200, bare || 155+2 | 13.35 | 14.27 | 16.7 | 14.1

Teflon | 15443 | 10.29 | 7.65 | 14.5 | 15.8
ESR | 14543 | 11.14 | 12.09 | 16.6 | 12.2
EJ-204, bare | 136+3 | 10.08 | 10.67 | 15.7 | 14.7
Teflon || 14242 | 8.06 | 6.54 | 13.1 | 14.3 4 Also, highest light
ESR | 12543 | 859 | 9.64 | 17.6 | 12.2 output
EJ-230, bare || 141+3 9.61 8.86 17.8 | 15.0 * Lowest possible
Teflon | 14242 | 839 | 6.32 | 22.6 | 13.9 threshold to optimize
ESR | 15643 | 10.17 | 852 | 234 | 13.0 detection of fission
EJ-276, bare || 183+5 | 12.13 | 13.51 | 17.8 | 14.1 energy neutrons
Teflon | 17142 | 9.29 | 954 | 165 | 14.1 Estimate 30 keVee with 7
ESR || 17744 | 11.65 | 1045 | 15.0 | 11.3 mV electronics thresieid
Syst. error ¥ 0.7 | 1042 | 135 -

See: M. Sweany, A. Galindo-Tellez, J. Brown, E. Brubaker, R. Dorrill, A. Druetzler, N.
Kaneshige, J. Learned, K. Nishimura, and W. Bae. “Interaction position, time, and energy
resolution in organic scintillator bars with dual-ended readout” Nucl. Instr. And Meth. A
927 (2019) 451-462




Efficiency calculations
Efflclency comparlson

1 .- ................... . .................. .. ................... \ ................ Prupuse.d Svsc
; : : : : Twu scatters in SVSC

Compact high-efficiency
neutron imager:

* High efficiency reduces
measurement time

Hydrogen scatters

: M:in 200 kév H sca@tters

T TTTTHT

Current NSC | :
' Front & rear scatters
: On hydmgan :
............. Abcwa 200 kGV

Compact form factor allows
easy transport, deployment
in tight spaces, close

approach to threat sources.

Fraction of incident neutrons
—
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. Appl Ication spaces: Min separation of two first interactions (cm)

SNM search/standoff
detection If successful:

Cargo screening * Spectroscopic capability
Arms control * Good per-event angular resolution
Emergency response * High efficiency

 Compact form factor




Proton recoil energy vs. light yield (EJ-230)
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Light-yield fitting (EJ-230)
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