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Inverse Problems:
Observing the Unobservable

Suppose we have a "black box" system in the as-manufactured state that has
only partially known parameters
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Question: can we non-destructively interrogate the system to "see what is inside"?

Typical quantities of interest:
• Material properties
• Loads
• Boundary conditions
• Residual stresses
• Size/shape/location of inclusions (e.g. composite materials)

Example applications:
• Seismic imaging
• Medical imaging
• Non-destructive evaluation



Categories of Inverse Problems
■ Imaging

■ Medical ultrasound

■ Seismic exploration

■ Calibration of material models

■ Structural material properties, circuits, thermal properties, etc.

■ Force reconstruction

■ Sub-structuring for mechanical testing of components

■ Optimal Experimental Design

■ Best placement of sensors, test fixture setups

■ Shape reconstruction

■ E.g. inverse scattering
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Research Challenges in Inverse
Problems: Sandia Applications
• 3D models required since measurements at several locations

• Large parameter spaces/high-dimensionality of inverse
problem

• Spatially-varying material parameters

• Temporally-varying functions (boundary conditions, loads, etc)

• Rolling uncertainty quantification into the inverse problem: 2
approaches

• Stochastic optimization

• Bayesian methods
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Inverse Problem Strategy in Sierra

Finite Element and Optimization Codes operate as
independent entities

Objective function,
derivative operators

4u

Next iterate of
design variables

Sierra Mechanics — massively parallel
multiphysics simulation
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Gradient-based optimization
(adjoint methods used to compute

gradients)



Inverse Capabilities in Sierra
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Enabling adjoint-based inversion capabilities across Sierra Mechanics

2010

Sierra-SD

2014

2016

Aquino sabbatical

source identification

material identification

contact identification
- welds, delaminations

residual stress

Sierra 4.42 release

metamaterial design ♦

lnverseOpt
toolkit

today

. Example applications

• Force/material/contact area
reconstruction (structural,
acoustic, and thermal)

AIR • Viscoelastic material
parameter identification

Thermal flux, conductivity
distributions (under
development)

• Additive Manufacturing:
residual stress, acoustic
metamaterials

•

Aria/Fuego thermal
conductivity unit tests
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Use Cases for Inverse Problems
Adjoint-based inversion enables new use cases for Sierra Apps
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Experiment•

Flux boundary conditions

dirource
Reconstruction

Enables use cases

A ;op
Thermal/mechanical material
reconstruction, residual stress,
metamaterial design

Material/residu
stress

Reconstruction

Delamination/weld
characterization

Contact surface
Reconstruction

Ground-based
acoustic/thermal tests

Design of
Experiments

Sierra-SD, Sierra-SM, Sierra-TF
with embedded sensitivities adbints, etc

enable all Sierra apps to reconstruct forces, materials,
contact surfaces, and assist in designing experiments

Uniqueness: CompSim-enabled inverse optimization
that provides capabilities for the above use cases



PDE-Constrained Optimization

Formulation

Abstract
optimization
formulation

minimize J( u. p)
u;p

subject to g(u. p) = 0

p. := J wT g
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Objective function

PDE constraint

Lagrangian

10} First order optimality
conditions
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Example: Source Reconstruction
• Goal: reconstruct structural, thermal, and/or acoustic energy

sources that produce the given
accelerometer/temperature/microphone measurements

• Large parameter space — time histories for pressure functions

• Sensor placement — design of experiments

Structural loads 
Attachment forces from
accelerometer measurements

Acoustic loads 
- Pressure distributions from
microphone measurements

ZOO

100

10)

—simulabon
— expennental data
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Thermal flux loads 
Flux distributions from
temperature measurements

Fire flux boundary
conditions
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Example: Partially Connected Surfaces 54(3ries
• Partially-bonded plates/cylinders — can we invert for the

bonded/debonded regions?
• Large parameter space — number of FEM modes on surfaces

•

•
Target debonded regions

410
Detected debonded regions

(Thresholded plot)

Partially bonded
plates

Frequency-domain pressure load at 2000Hz

Target Debonded Region
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Reconstructed Density Field (A)

Detected Debonded Region (Thresholded plot)

Partially bonded
cylinders

-1 0 1
Distance Along Cylinder Axis

Line plot through
delaminated area



Example: Material Parameter

Extraction
Problem: in-situ material parameters often unknown
• Parameters not measurable without destroying structure
• Interrogate material with mechanical/thermal inputs
• Measure response, infer missing in-situ properties
• Large parameter space — spatially-varying parameters

Viscoelastic material and joint
stiffness extraction using Sierra-SD

Orthotropic material
extraction for composite
panel using Sierra-SD

1.0  2 10

1.92

0 8

1.74

0.6
1.56

1.38
0.4

1.20

0 2

1.02

0.0 0.84
0 0 0.2 0.4 0 6 0 8

1.0

X(m)

Reconstructed thermal
conductivity from
Sierra-TF (Fuego)



1 Example: Residual Stress Extraction
Problem: additively manufactured parts suffer from large
residual stresses
• Compromises part integrity
• FEM modeling needs stresses for initial conditions
• Stress is not a measurable quantity
• Large parameter space — spatially-varying stress fields
Goal: estimate residual stress fields from measured
displacement data (digital image correlation)
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Inverse Problems: Acoustic Cloaking
2-D fluid region with circular VE solid inclusion
Inclusion consists of concentric rings w/ distinct material properties
Periodic acoustic load applied to end
Match forward problem pressure distribution by adjusting VE material parameters
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Left: Model Set up

Right: Forward problem pressure distribution (500 Hz loading) in model with 50 layers
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Acoustic Cloaking
- Optimized VE foams allow recovery of desired pressure distribution
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Left: Target acoustic pressure distribution, from forward problem

Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)

Right: Pressure distribution after convergence to optimized design



Acoustic Cloaking Results: Bulk Modulus

Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
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Figures: Real component of bulk modulus along radius, for various frequency
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Conclusions

• Adjoint-based optimization enables inversions with large
parameter spaces and/or high dimensionality of interest to
Sandia

• Leveraging Sandia software components

• Sierra Mechanics for massively parallel multiphysics forward
simulations

• Rapid Optimization Library (ROL) for gradient-based optimization

• Application spaces at Sandia are broad and continuing to
grow
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