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Inverse Problems: ) .
Observing the Unobservable

Suppose we have a “black box” system in the as-manufactured state that has
only partially known parameters

Question: can we non-destructively interrogate the system to “see what is inside™?

Typical quantities of interest:
» Material properties
 Loads

« Boundary conditions

» Residual stresses

» Size/shape/location of inclusions (e.g. composite materials)

Example applications:

* Seismic imaging

* Medical imaging

* Non-destructive evaluation




Categories of Inverse Problems h

= Imaging
= Medical ultrasound
= Seismic exploration

= Calibration of material models

= Structural material properties, circuits, thermal properties, etc.

= Force reconstruction

= Sub-structuring for mechanical testing of components

= Optimal Experimental Design

= Best placement of sensors, test fixture setups

= Shape reconstruction

= E.g.inverse scattering
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Research Challenges in Inverse e
Problems: Sandia Applications

Laboratories
= 3D models required since measurements at several locations

= large parameter spaces/high-dimensionality of inverse
problem
= Spatially-varying material parameters
= Temporally-varying functions (boundary conditions, loads, etc)
= Rolling uncertainty quantification into the inverse problem: 2
approaches
= Stochastic optimization

= Bayesian methods
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Inverse Problem Strategy in Sierra

Finite Element and Optimization Codes operate as
Independent entities

Obijective function,
derivative operators

>
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Next iterate of
design variables

Gradient-based optimization
(adjoint methods used to compute
gradients)

Sierra Mechanics — massively parallel
multiphysics simulation




Inverse Capabilities in Sierra )
Enabling adjoint-based inversion capabilities across Sierra Mechanics
= Example applications

Aquino sabbatical = Force/material/contact area
source identification , - P reconstruction (structural,

acoustic, and thermal)

material identification

= \/iscoelastic material

f parameter identification
contact identification == Thermal flux, conductivity
- welds, delaminations . .. ) .
residual stress oS e s distributions (under

Sierra 4.42 release development)

metamaterial design <=

= Additive Manufacturing:
residual stress, acoustic
metamaterials

Aria/Fuego thermal
conductivity unit tests

today




Use Cases for Inverse Problems ) i,

Adjoint-based inversion enables new use cases for Sierra Apps
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Enables use cases

X
Thermal/mechanical material
reconstruction, residual stress,
metamaterial design

Delamination/weld Ground-based
characterization acoustic/thermal tests

Flux boundary conditions

Material/residual
stress
Reconstruction

|

Sierra-SD, Sierra-SM, Sierra-TF

Source
Reconstruction

Contact surface Design of
Reconstruction Experiments

with embedded sensitivities (adjoints, etc)

Goal: enable all Sierra apps to reconstruct forces, materials, Uniqueness: CompSim-enabled inverse optimization
contact surfaces, and assist in designing experiments that provides capabilities for the above use cases




PDE-Constrained Optimization
Formulation

minimize  J(u,p)

Abstract i
optimization subject to g(u.p) =0
formulation

Llu,p.w):=J+wlg
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Objective function

PDE constraint

Lagrangian

First order optimality
conditions

Hessian calculation




Example: Source Reconstruction .
= Goal: reconstruct structural, thermal, and/or acoustic energy

sources that produce the given
accelerometer/temperature/microphone measurements

= Large parameter space — time histories for pressure functions
= Sensor placement — design of experiments

Structural loads AEOUS“C |°3fjst — Thermal flux loads
Attachment forces from - MieasUle QISHDULONS TOM - Flyy distributions from
accelerometer measurements microphone measurements temperature measurements

Fire flux boundary
conditions
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Example: Partially Connected Surfac&g&:.

« Partially-bonded plates/cylinders — can we invert for the
bonded/debonded regions?
« Large parameter space — number of FEM modes on surfaces

Frequency-domain pressure load at 2000Hz
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Example: Material Parameter
Extraction

Problem: in-situ material parameters often unknown

« Parameters not measurable without destroying structure
* Interrogate material with mechanical/thermal inputs

* Measure response, infer missing in-situ properties

» Large parameter space — spatially-varying parameters
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Viscoelastic material and joint extraction for composite conductivity from
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Example: Residual Stress Extraction

Problem: additively manufactured parts suffer from large
residual stresses

« Compromises part integrity

 FEM modeling needs stresses for initial conditions

» Stress is not a measurable quantity

« Large parameter space — spatially-varying stress fields

Goal: estimate residual stress fields from measured
displacement data (digital image correlation)

Reconstructed stress

Predicted traction field from field from

inverse solution (Sierra-SD) inverse solution
(Sierra-SD)
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Inverse Problems: Acoustic Cloaking Lf

2-D fluid region with circular VE solid inclusion

Inclusion consists of concentric rings w/ distinct material properties

Periodic acoustic load applied to end

Match forward problem pressure distribution by adjusting VE material parameters

ABSORBING BOUNDARY
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Left: Model Set up
Right: Forward problem pressure distribution (500 Hz loading) in model with 50 layers 14




Acoustic Cloaking ) fos,

- Optimized VE foams allow recovery of desired pressure distribution

Forward Initial Guess Optimized

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design



Acoustic Cloaking Results: Bulk Modulus

Bulk modulus sensitive to frequency, and varies nontrivially along disk radius

Bulk Modulus (Pa)

Bulk Modulus (Pa)

L

=S

(8]

o)

=

=

[y
L

=
o

L

0

w107 400 Hz
A Illf
- |I|I|
0 0.05 0.1 0.15% 0.2
Distance from Center
108 1600 Hz
|||
ll r',
I",II
.\\i
L_--ﬂ_.M"ﬁ"J
0 0.05 0.1 015 0.2

Distance from Center

%102 800 Hz
el ."II
<3
v {
=
']
32
L]
=
=1 |
-
(a'a]
0 |
0 0.05 0.1 0.15% 0.2
Distance from Center
108 2000 Hz
10 & 10
L 8 e
:: ;"/r
= 6
2 e
a | .
E 4 -l-"\l I|'II
K. X |
5 2 1':,.\.“ ] F“'.IH II||
—J ¥
0
0 0.05 0.1 0.1% 0.2

Distance from Center

Bulk Modulus {Pa)

L

I

L

o]

=

=

£ 10° 1200 Hz
N
0 0.05 0.1 0.15 0.2

Distance from Center

Figures: Real component of bulk modulus along radius, for various frequency
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Conclusions )

= Adjoint-based optimization enables inversions with large
parameter spaces and/or high dimensionality of interest to
Sandia

= |everaging Sandia software components

= Sierra Mechanics for massively parallel multiphysics forward
simulations

= Rapid Optimization Library (ROL) for gradient-based optimization

= Application spaces at Sandia are broad and continuing to
grow




