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Overview of approach

▪ Examined test procedures, geometries, and findings to build a modeling methodology
• Constitutive components: plastic anisotropy (SFC1), rate-dependence, and damage evolution (SFC2)

▪ Iterative and rapid parameterization of input physics through MatCal (SFC2) and Dakota
• Inclusion of variability through Kolmogorov-Smirinov test statistics and sensitivity studies
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SFC3 Challenge Geometry Load vs. Displacement
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Reviewing tensile data
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Modeling assumptions and calibration
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Modeling methodologies

▪ Temperature and rate dependent plasticity

▪ Plastic anisotropy
• Geometric variability, surface defects/voids

▪ Explicit representation of geometries

▪ Inclusion of surface defects

▪ Void nucleation, growth
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5 
Modeling assumptions and calibration
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Modeling methodologies

▪ Temperature and rate dependent plasticity

▪ Plastic anisotropy
• Geometric variability, surface defects/voids

▪ Explicit representation of geometries

▪ Inclusion of surface defects

▪ Void nucleation, growth
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Modeling methodologies

▪ Temperature and rate dependent plasticity

▪ Plastic anisotropy

▪ Geometric variability, surface defects/voids

▪ Explicit representation of geometries

▪ Inclusion of surface defects

▪ Void nucleation, growth
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Modeling assumptions and calibration
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Modeling methodologies
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▪ Plastic anisotropy
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Learning through targeted studies
8

• Method 1 — constitutive model can account for • Method 2— explicit modeling of defects required to

observed variability accurately capture variability
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Learning through targeted studies
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Method 1 — constitutive model can account for Method 2— explicit modeling of defects required to

observed variability accurately capture variability
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Learning through targeted studies
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• Metnou — con—Luuv c model can account ror • Method 2— explicit modeling of defects required to

observed variability
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Seeding large defects in notched and challenge geometries11
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Calibrate damage and account for variability
12

• Calibrated damage material constants to the uniaxial and notched specimens with
largest displacements
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Calibrate damage and account for variability
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• Calibrated damage material constants to the uniaxial and notched specimens with
largest displacements

• Calibrated material model to all data sets individually to obtain parameter variability
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Calibrate damage and account for variability
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• Calibrated damage material constants to the uniaxial and notched specimens with
largest displacements

• Calibrated material model to all data sets individually to obtain parameter variability
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Calibrate damage and account for variability
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• Calibrated damage material constants to the uniaxial and notched specimens with
largest displacements

• Calibrated material model to all data sets individually to obtain parameter variability
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Blind predictions
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▪ Load displacement prediction shows good agreement to experimental results
▪ Local measurements (strains) are accurate at higher displacements

Eyy at crack initiation
2.4e-01

0.2

0.15

0.1

0.05

0.0e+00

fyy at failure
4.0e-01

0.3

0.2

0.0e+00

9000 
SFC3 Challenge Geometry Load vs. Displacement

8000

7000

6000

25000

° 4000

3000

2000

1000

0
0.0 0.5 1.0 1.5 2.0

Average Gage Displacement (rnm)

-----Exp. - 80th
%-ile

—Exp. -
Average

- - -Exp. - 20th
%-ile

--Simulation
- 80th %-ile

—Simulation
- Average

- - -Simulation
- 20th %-ile



17
Global load displacement errors
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18 Error for all Qols
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Lessons learned
1 9

• Local deformation sensitive to local defect structures

• Global measures can be sensitive to small, local geometric
inconsistencies and defects
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Current/future work: overview

oImprove local strain predictions by including porosity and voids

oUnderlying assumption: voids primary driver for observed variability

• Ignoring surface roughness

• Assuming oxides or other impurities/imperfections can be homogenized in material model

oRequires three steps:

• Calibrate void-free material model

• Develop stochastic void model

• Validate the void model and void-free material model
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Current/future work:Adding stochastic void model
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Distance to nearest surface
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Current/future work:Void-free material model calibration

oCalibrate plasticity to pre-peak load uniaxial, tension data; literature rate dependence data (Nordberg 2004); and
new notched data: machined 5 mm and 15 mm notches

oCalibrate damage to all notched data using genetic algorithm

• Printed, 5 mm notch, 15 mm notch

oSame assumptions as during challenge but additional nucleation term
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23  High FidelityValidation

oMaterial model seems fairly accurate

oGlobal load-displacement accurate

oLocal deformation very similar

oThe model unloads too quickly after 0.9 mm displacement
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High Fidelity Validation
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EMaterial model predicts crack growth in two
areas well
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25  High Fidelity Validation

mIn the three other stress concentrations there are clear short comings

• Cause could be material model, mesh or boundary conditions

NApproaching best that model can do without more information
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26 
Goal:Assess structural variability of AM topology optimized parts

From SFC3, we suspect that in AM materials defects drive the response of

small structures without stress concentrations
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Possible paths forward:
• Reduce material sensitivity to surface defects through post-processing
• Experimentally measure defects in every AM part manufactured and

develop an acceptance criteria
• Develop statistical defect model and explicitly simulate defects
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28  High FidelityValidation
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L29 igh Fidelity Validation

CT scans
Deformed Mesh with Crack
Deformed Mesh without Crack
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30 High Fidelity Validation

CT scans
Deformed Mesh with Crack
Deformed Mesh without Crack
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High Fidelity Validation

CT scans
Deformed Mesh with Crack
Deformed Mesh without Crack
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