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Overview of approach

Examined test procedures, geometries, and findings to build a modeling methodology

Constitutive components: plastic anisotropy (SFC1), rate-dependence, and damage evolution (SFC2)
Iterative and rapid parameterization of input physics through MatCal (SFC2) and Dakota

Inclusion of variability through Kolmogorov-Smirinov test statistics and sensitivity studies
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Modeling assumptions and calibration
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Modeling assumptions and calibration
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Modeling methodologies
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Temperature and rate dependent plasticity

Plastic anisotropy
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Geometric variability, surface defects/voids

" Explicit representation of geometries

B  Inclusion of surface defects

Void nucleation, growth




Modeling assumptions and calibration Initial guess
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Modeling methodologies

" Temperature and rate dependent plasticity

® Plastic anisotropy

Displacement (mm) 5

F(x) = inz
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= Sierra/SM for FEA
= Dakota for Optimization Algorithm
= MatCal for file and model management I

With 14 unknown parameters, calibrate using an iterative
approach with increasing complexity :
(1) rate dependence (2) hardening (3) anisotropy (4) damage
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Method 1 — constitutive model can account for Method 2— explicit modeling of defects required to
observed variability accurately capture variability
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Learning through targeted studies

Method 1 — constitutive model can account for

observed variability
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Learning through targeted studies

Load (N)

Method 2— explicit modeling of defects required to
accurately capture variability
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) Seeding large defects in notched and challenge geometries

Notched specimen

® specimen NA04
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— 2.5% voided area simulation
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Defects have small effect on load displacement curves
Not enough data to develop defect model
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Calibrate damage and account for variability
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Calibrate damage and account for variability
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Calibrated damage material constants to the uniaxial and notched specimens with

largest displacements

Calibrated material model to all data sets individually to obtain parameter variability

53 calibrations for

plasticity (Yo)
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Calibrate damage and account for variability
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Calibrate damage and account for variability
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®  (Calibrated damage material constants to the uniaxial and notched specimens with

largest displacements

"  (Calibrated material model to all data sets individually to obtain parameter variability

600

53 calibrations for
plasticity (Yo)

100 ® tension data

—— tension simulation

%.0 0.5 1.0 1.5 2.0 2.5
Displacement (mm)

32 specimens
built

ecimenA3

ecimenA16

Load (kN)

4.0

35F

3.0F

b
o

ro
o

—_
(@

0.5F

o,

@°
OJ

D

D

D

o

<

T T T T T T T
00000000000 6
moOOOOOOOOOOOO 00,

L=
22 calibrations
for damage (®o)

O
Q

s

=

e}

notched data
notched simulation

0 0.1

02 03 04 05

06 07 08

Displacement (mm)

8000 -

6000 -

Load (N)

4000 -

2000 -

0 -

Displacement (mm)

T 1 T LI L
04 06 0.8

1.0

1.2

1.0
=
z
®
Q
o
o
o 0.5
=2
©
=)
S
O —— 53 samples
—— 5 samples
0.01
470 480 490
Yield Strength (MPa)
1.0
2
= 0.81
Q
®
o)
2 0.61
o
g
3 0.4
2
S
3 021 —— 32 geometries
—— 5 geometries
0.01

7900 8000 8100 8200 8300 8400
Peak Load (N)

The Kolmogorov-Smirnov test statistic
used to optimally obtain a reduced set of
representative simulations.

Reduced ~42000 simulations to
125 simulations total




Blind predictions
16

® Load displacement prediction shows good agreement to experimental results

" Local measurements (strains) are accurate at higher displacements
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Global load displacement errors
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Lessons learned .

Stress concentrations, however, overwhelm surface defects to mitigate differences

in the global response
| |

Local deformation sensitive to local defect structures
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20 I Current/future work: overview
"Improve local strain predictions by including porosity and voids
"Underlying assumption: voids primary driver for observed variability

" [gnoring surface roughness

* Assuming oxides or other impurities/imperfections can be homogenized in material model

"Requires three steps:

» Calibrate void-free material model

" Develop stochastic void model

= Validate the void model and void-free material model
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Current/future work: Adding stochastic void model

Tension specimen with
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Load (N)

Current/future work:Void-free material model calibration
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= Calibrate plasticity to pre-peak load uniaxial, tension data; literature rate dependence data (Nordberg 2004); and
new notched data: machined 5 mm and 15 mm notches

=Calibrate damage to all notched data using genetic algorithm

" Printed, 5 mm notch, 15 mm notch

=Same assumptions as during challenge but additional nucleation term
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High Fidelity Validation
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" Material model seems fairly accurate
"Global load-displacement accurate
"Local deformation very similar
"The model unloads too quickly after 0.9 mm displacement
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High Fidelity Validation

" Material model predicts crack growth in two
areas well
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High Fidelity Validation
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: : 9000 .
"In the three other stress concentrations there are clear short comings <000 |
= Cause could be material model, mesh or boundary conditions 7000 |65 1
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.. | G0al: Assess structural variability of AM topology optimized parts

Plato Topology Optimization
g

From SFC3, we suspect that in AM materials defects drive the response of
small structures without stress concentrations

—

Stress minimization
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Possible paths forward:

" Reduce material sensitivity to surface defects through post-processing

" Experimentally measure defects in every AM part manufactured and
develop an acceptance criteria

= Develop statistical defect model and explicitly simulate defects
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High Fidelity Validation
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29 Ligh Fidelity Validation
B CT scans

B Deformed Mesh with Crack
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,, fHigh Fidelity Validation
B CT scans

B Deformed Mesh with Crack
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