This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

@ Sandia National Laboratories

Calibration of Organic Material Decomposition Models Using Gradient-Based

Optimization and MCMC
E. Le Wagman, S.N. Scott, A. Frankel, R. Keedy,V. Brunini, B. Houchens, T. Johnson e m———

Sandia National Laboratories, California

Goal Approach Results — Computational Efficiency
> Calibrate organic matetial decomposition models » Use/ improve advanced gradient optimization — model may = Computational cost history, 0.1% noise: N o5 A J *
» Improve efficiency, accuracy, reproducibility of be complex, but still a smooth system of ODEs i1 e s ineucer_courine o llic2 st L ineon_courine o B
. . kl . f TGA d | E 1 t 1 th 1 t ¢ / . t 1 0-100 1293 785.53 0-100 145.36 oo 150 200 250 BOOTemper?f;i(l)lre <00)400 450 500 550 600
estimating kinetic parameters from ata & Evolutionary algorithms as a last resort / initial run c0.50 o1e - 136 q co 73 e o
- s Cited motivation was problem ill-posedness (multiple 1000 122 : s B L . i - — T T T
Motivation . L L | e *
SOlU.thﬂS), hlgh—dlﬂl@ﬂSlOﬂahty [3] 0 | N01‘°m(gc), IO.l% noise 1 Norm(gc), 0.1% noise 0.9 \ T%%;nmm o i
» Organic materials are everywhere s Instead use a gradient-based method suited to 1ll-posed, . "o — 010 . :
. . . . . . 5 1000/ 5 0] o
s In large quantities: Spacecratt, car, furniture, house high-dimensional inverse problems 2 : o T |
-1K 7, i 0.5 - -
s Lightweight and strong, replace traditional engineering » Improving optimization: Compate objective functions [4] g £ 05 0y |
. . < 9 0.3 i
materials & Misfit — mass loss or mass loss rate data? S e 5 -l oal ]
= 2r = | ... . )
O Bufn at IOW temperﬂthes (2500C> > BGSt ﬁt parameters are inhereﬂtly urlcertain ,%D o0 1.5 ¢ %100 150 200 250 3(\)0T 350 (0)4([)0 450 500 550 600
25 = emperature (°
» Large-scale fire simulations s Quantify parameter uncertainty using Bayesian inverse M
o . . o -3 : ‘ ' ' ‘ 2.5 \ . .
& Decomposition kinetics model — a critical component [1] problem framework 0 ¢ W Iterftion 26 29 &l 0 5 10 15 20 » Shown atre point-wise posterior credible envelopes
_ _ Iteration
» Complex materials of interest s Incorporate subject matter expert subjective knowledge =~ Note quadratic shape for (100-0) convergence —a smoother function, better propertics containing the given parameter uncertainty, incorporate
' for Newton optimizer
/ ) . g . .
» Can’t use a global one-step reaction model » Hstimate probability of nearby parameters Parameteritersfion Historicsdifferenze to wldlal v Manest, 1o noise prior knowledge + data misfit
& Tedious traditional analytlc approaches [2] e : : N N . | 1C7, Noise 0%, 1000 | > Dashed orange line 1s priOr — what we thought the
s Shuffled C lex Fvolution (SCE Jed Results — Deterministic Calibration L Al N S
4 Shuttled Complex Evolution (SCE) recommende . e - bl range / probability for E_1 was. Solid line — converged
. . . 7 A2 : oy
optimization algorithm, GA used most [3] »m € R’ 9 parameters: ) go E2 posterior probability for E_1, atter 750,000 samples —
. . . . : ;; é n2 )
4 Both stochastic — different estimates with different s A;, Ei,n;, B;(0) for each component B;, plus A == what we can infer now from Bayes theorem
. » - = B : : : : 1
random seeds char coefficient V.. . (incorporate information prior, data, model likelthood)
4 Problematic for high-risk applications o Compensation effects, esp. with kinetic triplets |
Data <A i ’ Ei ’ ni) ’ | 110 I*""l*lz‘i"“ Qlo 2}] 30 AO | l(:c 7; NoIi:i:‘:l,lo-wo 20 25 30
s “A; = log(4;)”, scale other parameters to A eueekew T 1 | ] .
» Thermogravimetric Analysis (TGA) 0(10) I b P T PP {\ - | | Conclusions
4 Mg size sample: Isolate chemical kinetics ] - \ | 7 | | » Quadratic convergence, better matching of noisy mass
| - Objective functions / - I . L
» Heat at constant heating rate 5 ) o | | loss rate data, with mass loss objective
. . (100-0) Mass loss objective .. .
& Measure total mass loss as function of time/temperature ] > Bayesian inverse problem — a mathematical framework,
s Postprocess to get mass loss rate (temperature detivative) fi(m) = Z Z(M (m) — M;)? Bé can integrate expert knowledge with experimental data,
— see inflection points Bt T S e e T model misfit, do parameter uncertainty quantification
' 0-100) Mass loss rate objective . :
» Noisy ( ) ] : » lll-posedness and compensation effects — intended
S Sunthetic dat hod ot taroet val AM(m)  /dMy \2 (0-100) Slower or diverges
nthetic data — assess methods against target values L . icati '
| y S S fo(m) = Z Z ( o7 (d_T) ) In each of the 6 initial conditions (ICs) where the wass /loss application drives the recommended method / accuracy

i _—y : : |
Model B objective (100-0) converges to the global min (the synthetic
(50-50) Hybrid objective [5] ] ( g . . . J Current Work

target values), the wass loss rate objective (0-100) converges

Hypothetical charring material fz(m) =Af; + (1 = A)f,, A=0.5 , > Stan: Hamiltonian MC (HMC
T el el - all c T more slowly or diverges.
WO para @ Component moaecl - allows 10r over appmg See improved fit at p.eak. mass loss rate / matching of rate. dat.a at first reaction with ’ : o : A Compare COﬂVCfgCﬂCG, information obtained W / DRAM
ek (100-0) mass loss objective compared to mass loss rate objective. Resu lts — Ba)leS|a_n Unce rtai nt)l Quant|f|cat|0n T ¢ ” . - _
/ 4) mprove COI]VCfgeﬂCC OI unirorm pl’lOl" Ofr INf.-variance
dB E \ | | | Filmll d(‘ri\'ativ(l‘ fit, 0.1% 11()|i5(‘ ' o . o . () : 0 .
B, — gas O Ayexp ( RT) Bt Using DRAM, Gaussian priors with finite variance, .1%o Ganssin
B, —v.C+ (1—-v.)gas noise . .
| omponente A0t 550 % _ 4, exp< )Bgz : » Analytic gradient
‘ ‘ ‘ = t RT : ' : ' 2 . . . ——
D dc By > Posterior Gaussian density estimate plot, only E; s are » Address difficulties with order term and extinguishing
_ 081 = e vC A2 exp ( — _) B;l _ 0.2 a . . . .
5, : 7 ccii’lt" RT : well-constrained (posterior range is half of the prior range) mass components
5 ’ o o by the data-model misfit R EFERENCES:
B 05¢ 1 e :
k 24 é 0.9 e | [1] S.N. Scott et al., Validation of PMDI-based polyurethane foam model for fire safety applications, Proceedings
g | M=B.4+B.4+C - S E— o8 Il R e os ot ezt of the Combustion Institute (2018)
éé S e . | . - E | |— 0-100 ::(;g :n Sj@:::i / \ - Prior [2] K. Li et al., Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters
0.2 ' : dB;, dB, dC % —— ::?g u( (, 071 \\ i via a Genetic Algorithm Driven by Kissinger’s Method, Energy Fuels (2014)
0.1 LY - = dT + dT + dT 2 ] [ D i§ /AT, 10°C/ i 0.6 - \x . [3] L. Hasalova et al., Practical observations on the use of Shuffled Complex Evolution (SCE) algorithm for kinetic
0 ‘ Cs =z’ o S—— \ / e o = o "’(‘I‘n“ =05 \ i parameters estimation in pyrolysis modeling, Fire Safety Journal (2016)
. 20 égﬂmmm {i(g) o o E E E i;g;;i ig& }:: E‘ § oal XX | [4] G. Jomaa el I-<ir.16tic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric
Sandia National Laboratories is a multimission laboratory managed and operated by National -1 o <:‘:“TE‘:¥1”‘(':““ B FA analysm., Thermochllmlca Acta.(ZO‘l 5) . . T T - . .
Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Dw \I | kT AT, 15°C/ 0.3~ /,/’/ "\\\\ N [5] E RlChter, G. Rein, Pyr01y51s kinetics and multl—ob]ectlve mverse mOdClhng of cellulose at the mlcroscale, Fire
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration O e b il 0.2 = s | Safety Journal (2017) .
under contract DE-NA0003525. ‘ | [ 1 1 | 1 | 1 [ e . e, San_dla
SAND No. 1300 150 200 250 300 o :';r;() 400 150 500 550 600 0.1 - o a ; e o _ Natlonal '
ol | e o Laboratories




