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Goal

➢ Calibrate organic material decomposition models

A Improve efficiency, accuracy, reproducibility of

estimating kinetic parameters from TGA data

Motivation

➢ Organic materials are everywhere

6 In large quantities: Spacecraft, car, furniture, house

6 Lightweight and strong, replace traditional engineering

materials

6 Burn at low temperatures (250°C)

➢ Large-scale fire simulations

6 Decomposition kinetics model

➢ Complex materials of interest

6 Can't use a global one-step reaction model

Tedious traditional analytic approaches [2]

Shuffled Complex Evolution (SCE) recommended

optimization algorithm, GA used most [3]

6 Both stochastic different estimates with different

random seeds

6 Problematic for high-risk applications

a critical component [1]

Data

➢ Thermogravimetric Analysis (TGA)

6 Mg size sample: Isolate chemical kinetics

A Heat at constant heating rate fis

6 Measure total mass loss as function of time/temperature

A Postprocess to get mass loss rate (temperature derivative)

see inflection points

➢ N oisy

➢ Synthetic data assess methods against target values

Model

Hypothetical charring material

Two parallel component model

reactions
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Approach

➢ Use/improve advanced gradient optimization - model may

be complex, but still a smooth system of ODEs

Evolutionary algorithms as a last resort / initial run

Cited motivation was problem ill-posedness (multiple

solutions), high-dimensionality [3]

Instead use a gradient-based method suited to ill-posed,

high-dimensional inverse problems

➢ Improving optimization: Compare objective functions [4]

6 Misfit - mass loss or mass loss rate data?

➢ Best fit parameters are inherently uncertain

6 Quantify parameter uncertainty using Bayesian inverse

problem framework

6 Incorporate subject matter expert subjective knowledge

6 Estimate probability of nearby parameters

Results Deterministic Calibration

➢ m E R9, 9 parameters:

Ai, Ei, ni, Bi(0) for each component Bi, plus

char coefficient vc.

6 Compensation effects, esp. with kinetic triplets

(Ai, Ei, ni)

" Ai = log(Ai)", scale other parameters to

0(10)

Objective functions

(100-0) Mass loss objective

fi(m) - DM(m)
t

(0-100) Mass Ioss rate objective

f2 (n) =

/3 Ti

(50-50) Hybrid objective [5]
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See improved fit at peak mass loss rate / matching of rate data at first reaction with

(100-0) mass loss objective compared to mass loss rate objective.

Final dcrivative fit, 0.1% noise
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Results Computational Efficiency

Computational cost history, 0.1% noise:

IC 1 #Model runs #Newton Cpu Time (s)

0-100 1293 30 285.53

50-50 816 19 179.69

100-0 125 3 27.45
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Iteration
Note quadratic shape for (100-0) convergence - a smoother function, better properties

for Newton optimizer

Parameter iteration histories (difference to global min/target), no noise:
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(0-100) Slower or diverges

In each of the 6 initial conditions (ICs) where the mass loss

objective (100-0) converges to the global min (the synthetic

target values), the mass loss rate objective (0-100) converges 

more slowly or diverges. 
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Results Bayesian Uncertainty Quantification

Using DRAM, Gaussian priors with finite variance, .1%

noise

➢ Posterior Gaussian density estimate plot, only Ei 's are

well-constrained (posterior range is half of the prior range)

by the data-model misfit
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➢ Shown are point-wise posterior credible envelopes

containing the given parameter uncertainty, incorporate

prior knowledge + data misfit

➢ Dashed orange line is prior - what we thought the

range / probability for E_1 was. Solid line - converged

posterior probability for after 750,000 samples -

what we can infer now from Bayes theorem

(incorporate information prior, data, model likelihood)

Conclusions

➢ Quadratic convergence, better matching of noisy mass

loss rate data, with mass loss objective

➢ Bayesian inverse problem - a mathematical framework,

can integrate expert knowledge with experimental data,

model misfit, do parameter uncertainty quantification

➢ Ill-posedness and compensation effects intended

application drives the recommended method / accuracy

Current Work

➢ Stan: Hamiltonian MC (HMC)

Compare convergence, information obtained w/ DRAM

Improve convergence of uniform prior or inf.-variance

Gaussian

➢ Analytic gradient

Address difficulties with order term and extinguishing

mass components
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