

Calibration of Organic Material Decomposition Models Using Gradient-Based Optimization and MCMC

E. Le Wagman, S.N. Scott, A. Frankel, R. Keedy, V. Brunini, B. Houchens, T. Johnson
Sandia National Laboratories, California

Goal

- Calibrate organic material decomposition models
 - 🔥 Improve efficiency, accuracy, reproducibility of estimating kinetic parameters from TGA data

Motivation

- Organic materials are everywhere
 - 🔥 In large quantities: Spacecraft, car, furniture, house
 - 🔥 Lightweight and strong, replace traditional engineering materials
 - 🔥 Burn at low temperatures (250°C)
- Large-scale fire simulations
 - 🔥 Decomposition kinetics model — a critical component [1]
- Complex materials of interest
 - 🔥 Can't use a global one-step reaction model
 - 🔥 Tedious traditional analytic approaches [2]
 - 🔥 Shuffled Complex Evolution (SCE) recommended optimization algorithm, GA used most [3]
 - 🔥 Both stochastic — different estimates with different random seeds
 - 🔥 Problematic for high-risk applications

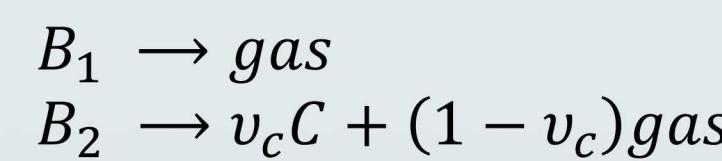
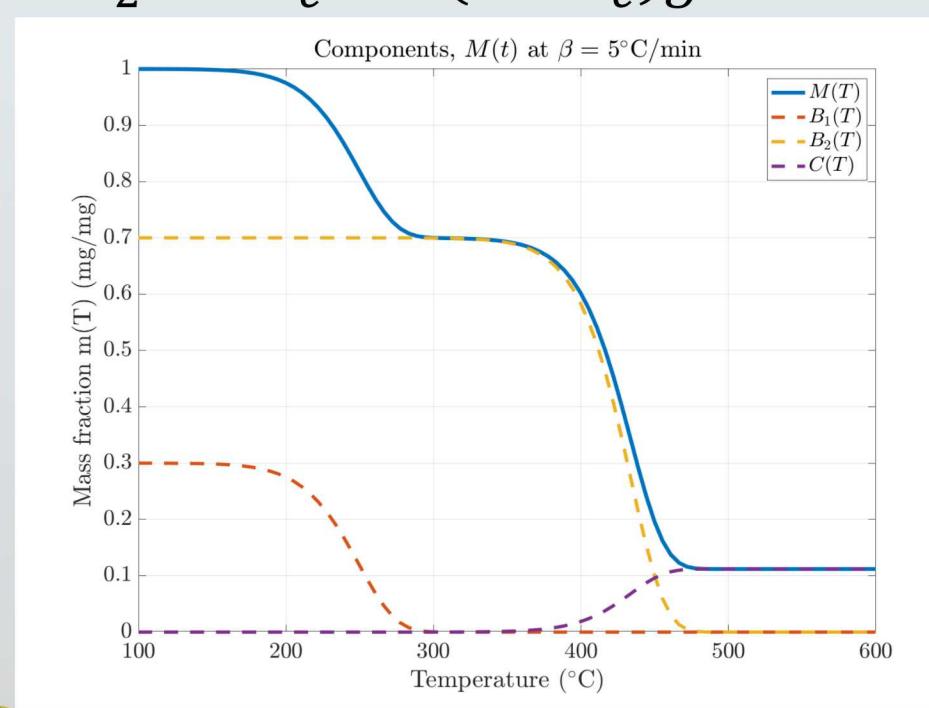
Data

- Thermogravimetric Analysis (TGA)
 - 🔥 Mg size sample: Isolate chemical kinetics
 - 🔥 Heat at constant heating rate β
 - 🔥 Measure total mass loss as function of time/temperature
 - 🔥 Postprocess to get mass loss rate (temperature derivative) — see inflection points
- Noisy
- Synthetic data — assess methods against target values

Model

Hypothetical charring material

Two parallel component model - allows for overlapping reactions



$$\frac{dB_1}{dt} = -A_1 \exp\left(-\frac{E_1}{RT}\right) B_1^{n_1}$$

$$\frac{dB_2}{dt} = -A_2 \exp\left(-\frac{E_2}{RT}\right) B_2^{n_2}$$

$$\frac{dC}{dt} = v_c A_2 \exp\left(-\frac{E_2}{RT}\right) B_2^{n_2}$$

$$\frac{dT}{dt} = \beta$$

$$M = B_1 + B_2 + C$$

$$\frac{dB_1}{dt} + \frac{dB_2}{dt} + \frac{dC}{dt} = \frac{dT}{dt}$$

Approach

- Use/improve advanced gradient optimization — model may be complex, but still a smooth system of ODEs
 - 🔥 Evolutionary algorithms as a last resort / initial run
 - 🔥 Cited motivation was problem ill-posedness (multiple solutions), high-dimensionality [3]
 - 🔥 Instead use a gradient-based method suited to ill-posed, high-dimensional inverse problems
- Improving optimization: Compare objective functions [4]
 - 🔥 Misfit — mass loss or mass loss rate data?
- Best fit parameters are inherently uncertain
 - 🔥 Quantify parameter uncertainty using Bayesian inverse problem framework
 - 🔥 Incorporate subject matter expert subjective knowledge
 - 🔥 Estimate probability of nearby parameters

Results – Deterministic Calibration

- $\mathbf{m} \in \mathbb{R}^9$, 9 parameters:
 - 🔥 $A_i, E_i, n_i, B_i(0)$ for each component B_i , plus char coefficient v_c .
 - 🔥 Compensation effects, esp. with kinetic triplets (A_i, E_i, n_i)
 - 🔥 " $A_i = \log(A_i)$ ", scale other parameters to $O(10)$

Objective functions

(100-0) Mass loss objective

$$f_1(\mathbf{m}) = \sum_{\beta} \sum_{t_i} (M(\mathbf{m}) - M_i)^2$$

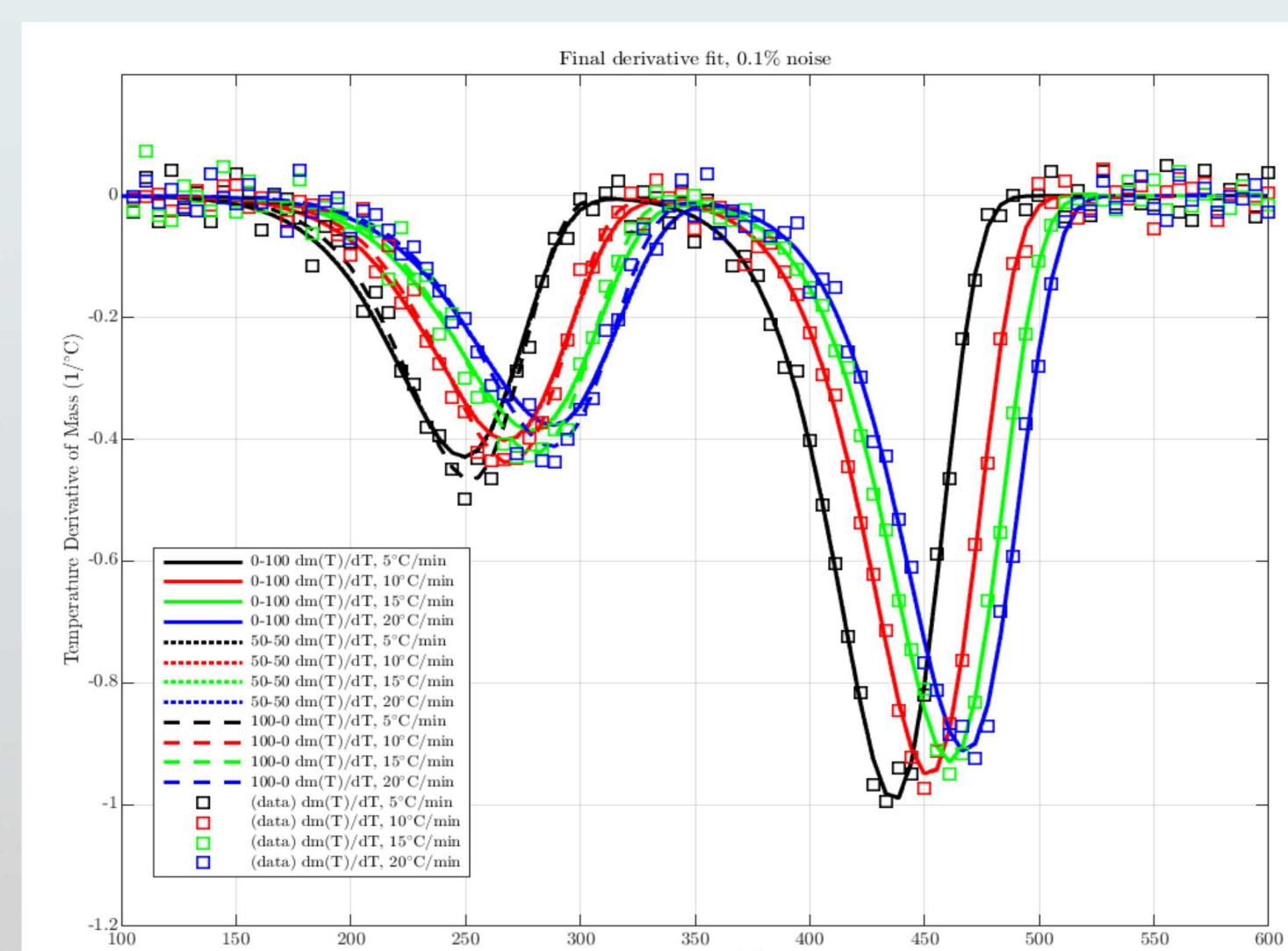
(0-100) Mass loss rate objective

$$f_2(\mathbf{m}) = \sum_{\beta} \sum_{t_i} \left(\frac{dM(\mathbf{m})}{dT} - \left(\frac{dM}{dT} \right)_{t_i} \right)^2$$

(50-50) Hybrid objective [5]

$$f_3(\mathbf{m}) = \lambda f_1 + (1 - \lambda) f_2, \quad \lambda = 0.5$$

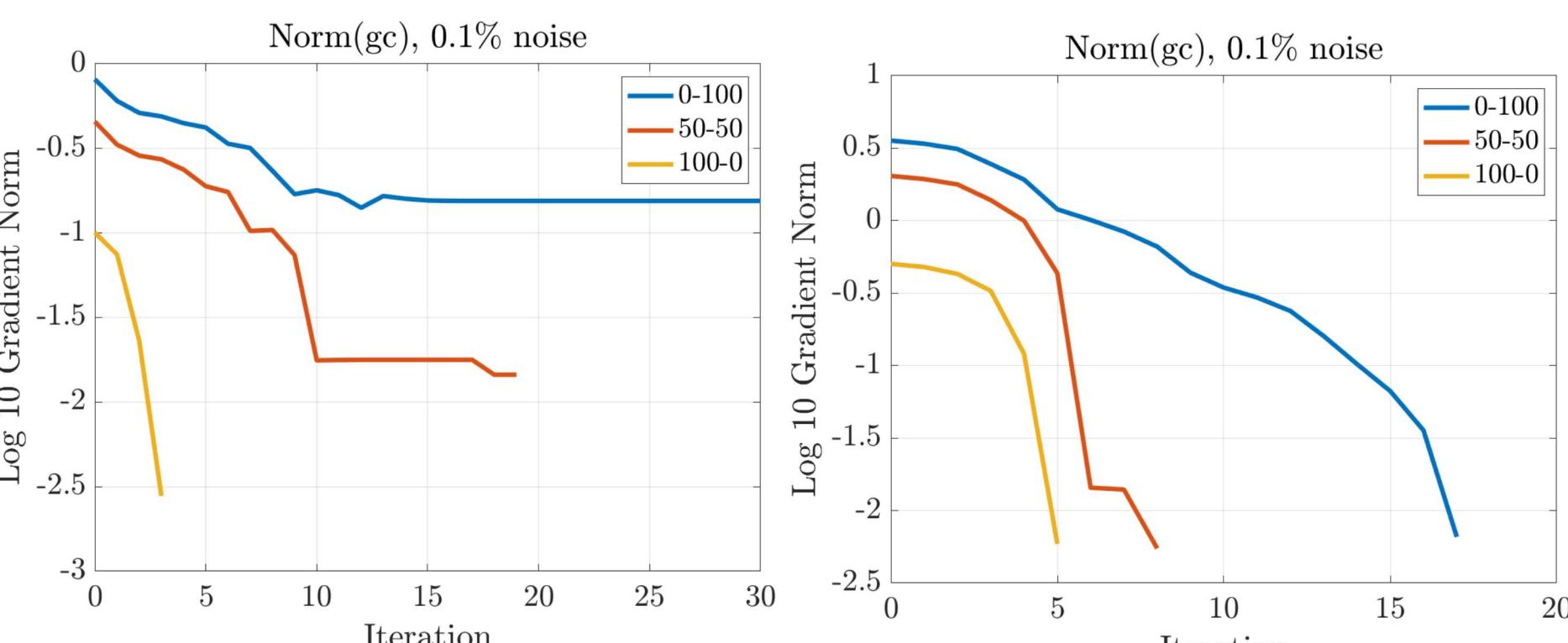
See improved fit at peak mass loss rate / matching of rate data at first reaction with (100-0) mass loss objective compared to mass loss rate objective.



Results – Computational Efficiency

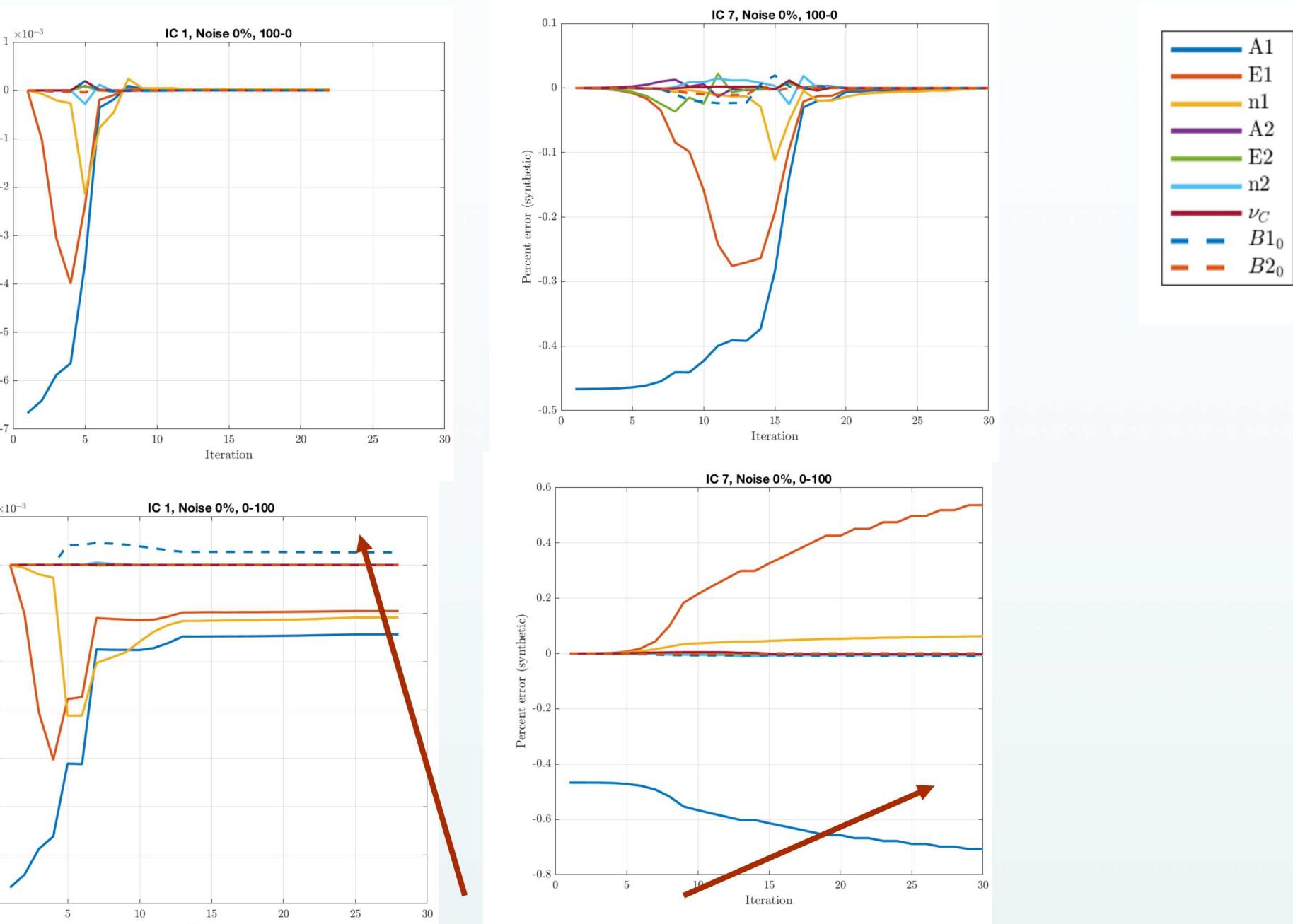
Computational cost history, 0.1% noise:

IC 1		#Model runs	#Newton	Cpu Time (s)	IC 2		#Model runs	#Newton	Cpu Time (s)
0-100		1293	30	285.53	0-100	736	17	145.36	
50-50		816	19	179.69	50-50	336	8	59.73	
100-0		125	3	27.45	100-0	165	5	26.84	



Note quadratic shape for (100-0) convergence — a smoother function, better properties for Newton optimizer

Parameter iteration histories (difference to global min/target), no noise:



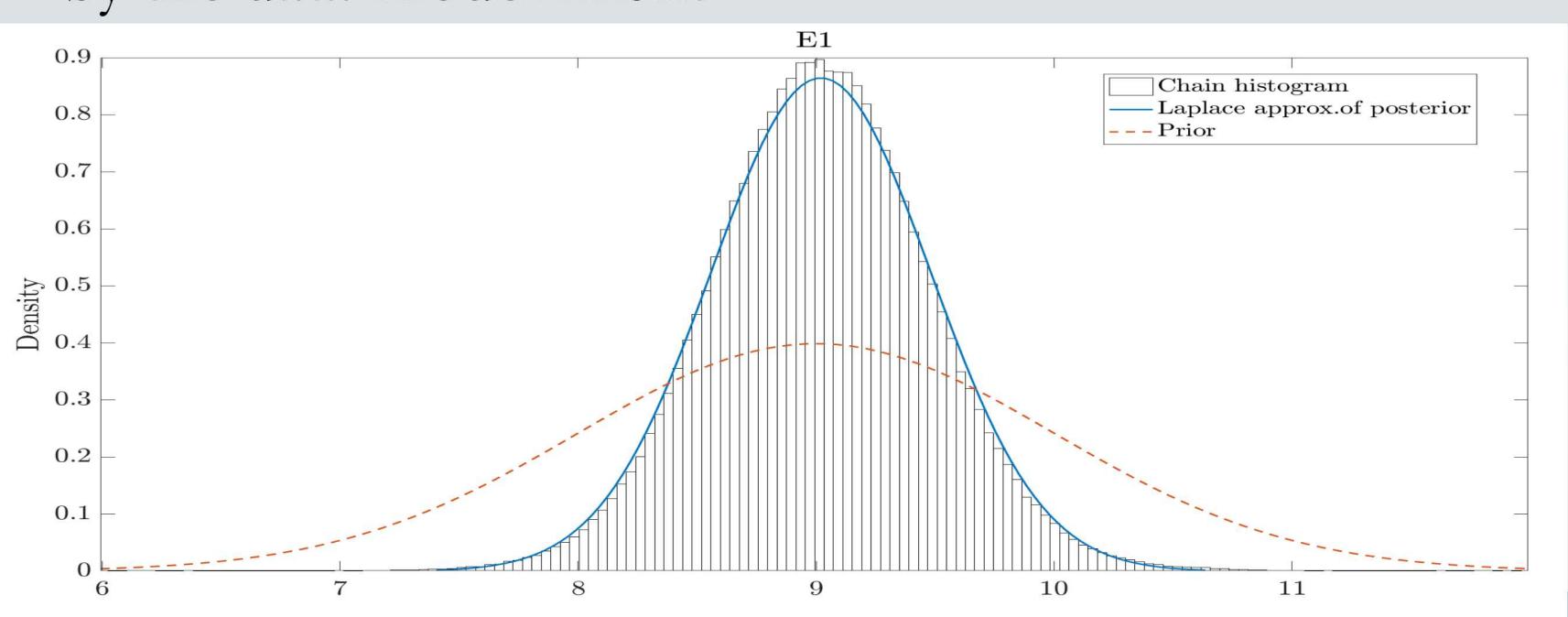
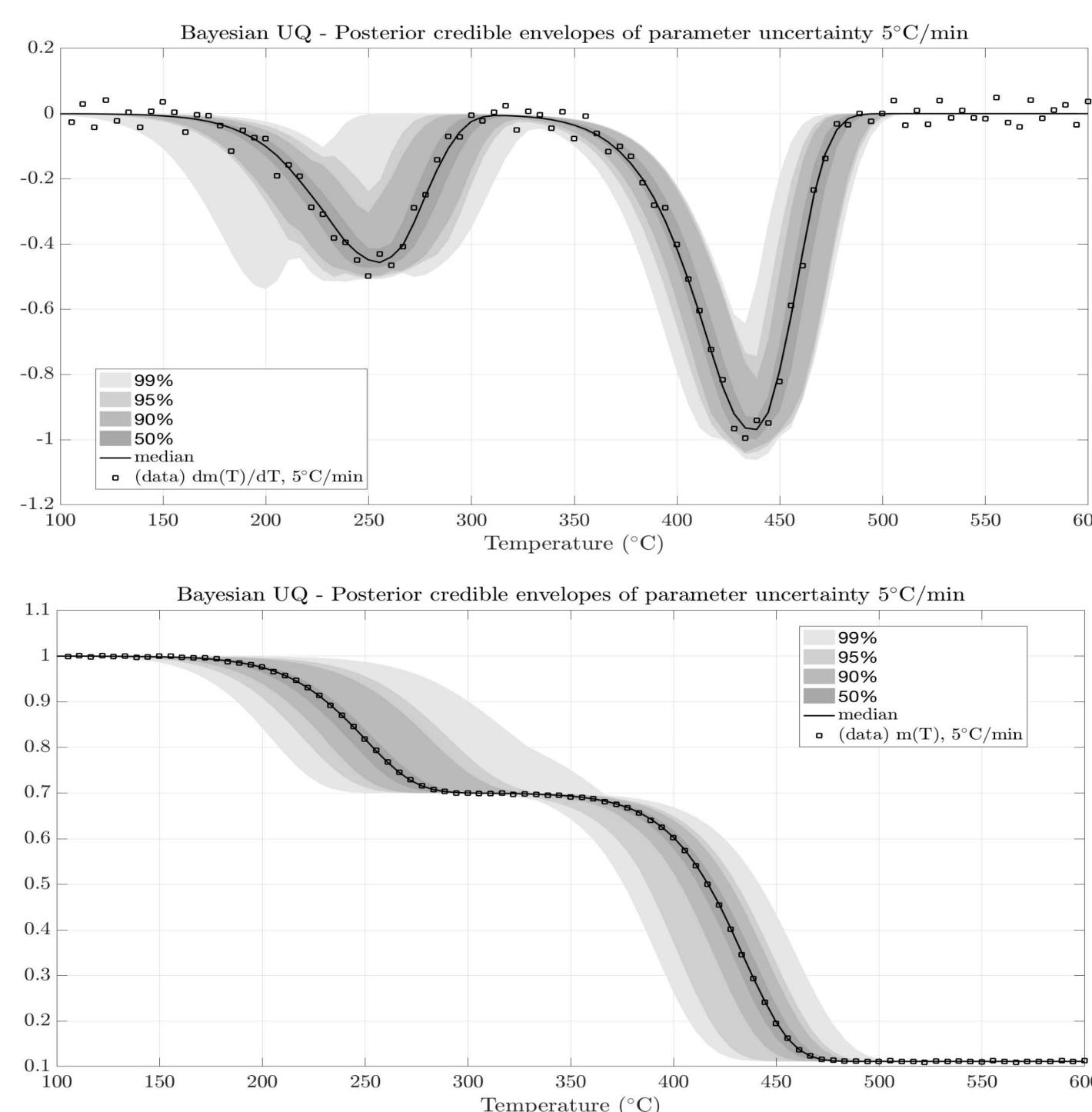
(0-100) Slower or diverges

In each of the 6 initial conditions (ICs) where the mass loss objective (100-0) converges to the global min (the synthetic target values), the mass loss rate objective (0-100) converges more slowly or diverges.

Results – Bayesian Uncertainty Quantification

Using DRAM, Gaussian priors with finite variance, .1% noise

- Posterior Gaussian density estimate plot, only E_i 's are well-constrained (posterior range is half of the prior range) by the data-model misfit



- Shown are point-wise posterior credible envelopes containing the given parameter uncertainty, incorporate prior knowledge + data misfit
- Dashed orange line is prior — what we thought the range / probability for E_1 was. Solid line — converged posterior probability for E_1, after 750,000 samples — what we can infer now from Bayes theorem (incorporate information prior, data, model likelihood)

Conclusions

- Quadratic convergence, better matching of noisy mass loss rate data, with mass loss objective
- Bayesian inverse problem — a mathematical framework, can integrate expert knowledge with experimental data, model misfit, do parameter uncertainty quantification
- Ill-posedness and compensation effects — intended application drives the recommended method / accuracy

Current Work

- Stan: Hamiltonian MC (HMC)
 - 🔥 Compare convergence, information obtained w/ DRAM
 - 🔥 Improve convergence of uniform prior or inf.-variance Gaussian
- Analytic gradient
 - 🔥 Address difficulties with order term and extinguishing mass components

REFERENCES:

- [1] S.N. Scott et al., Validation of PMDI-based polyurethane foam model for fire safety applications, Proceedings of the Combustion Institute (2018)
- [2] K. Li et al., Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger's Method, Energy Fuels (2014)
- [3] L. Hasalova et al., Practical observations on the use of Shuffled Complex Evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling, Fire Safety Journal (2016)
- [4] G. Jomaa et al., Kinetic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric analysis, Thermochimica Acta (2015)
- [5] F. Richter, G. Rein, Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale, Fire Safety Journal (2017)