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2 I Some Perspective on the Value Proposition of Tribology Research

i .S. ion i : 97. Bl Lawrence Livermore
Estimated U.S. Energy Cons‘lAJmptlon in 2016: 97.3 vCluads u% e

~1029 J or 100 EJ per year

Solar

0.587 Ll

Nuclear

8.42

Rejected
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of energy losses are friction and wear related.
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The value proposition for Tribology research:
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3 | Motivation for Metals Tribology Research
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Estimated 150 Metric Tons ($6.9B) of Au
used in Electrical Contacts per Year:

Refs: Gold Survey, Gold Fields Mineral Survey Ltd, 2011
Gold Bulletin 2010, Vol. 43-3, C. Hageliiken and C.W. Corti,
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Materials Tribology Survey

specific wear rate (mm?3/N-m)
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5 1 Lower friction and wear of nanocrystalline metals

Alloying reduces friction coefficient:

15 . 99.999% pure Au
E . °
g 1ol Allgymg improves
£ friction & wear
S | performance by reducing
S o5l 99.9% Au 1o _
g 05, : and stabilizing grain size
- (add immiscible species like Ni or Zn0)
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6 I The challenge is grain size instability...
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Grain growth in
nanocrystalline
metals is driven

Thermally...

S. Rajasekhara, K. Hattar, P. Ferreira, A. Kinghorn, B. G. Clark (unpublished); H. A. Padilla and B. L. Boyce, Exp. Mech. (2010)
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71 Regular Nanocrystalline Solution Model (Schuh Group at MIT)

Slide courtesy of [, Schub and H Murdoch (MI7) RNS Model:
Binary metal alloys exist possessing highly (intrinsically?)

thermodynamically stable nanocrystallinity.
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T. Chookajorn, et al., Science, 2012
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Weissmuller, J. Materials Research, 1994
D.S. Gianola et al., Acta Materialia, 2006




s I Binary metal alloys with favorable segregation
Reference: Murdoch and Schuh, J. Mat. Research (2013)
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9 I PtAu alloys one of new class of highly stable nanocrystalline alloys

A) PtAu cross-section B) Au atomic fraction
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PtAu alloys have high yield strength and remarkable fatigue resistance

Experimental Tensile Fatigue: Experimental stress-strain data:

25 - *freestanding 5 um thick films with columnar grains

Pt-Au max strength ~ 1.6 GPa

maximum stress, O, (GPa)
engineering stress (GPa)
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1k 10k 100k ™ 10M 0.0 0.5 1.0 1.5 2.0 2.5
cycles to failure, N, % engineering strain

This high yield strength and fatigue resistance
generated an interesting result...

J. F. Curry, et al., Advanced Materials (2018)
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Excellent thermal stability. What about mechanical?

grain size (nm)
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12 | Stable nanocrystalline PtAu exhibited long-lived low friction
(sliding against sapphire)
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J. F. Curry, et al., Advanced Materials (2018)




131 No evidence of microstructural evolution after prolonged tests

SEM of PtAu wear track after 100k passes TEM cross-sections of wear track

Nanoindentation hardness ~ 7 GPa sy Bl ~«~—— sliding djectvion —

- 5 I g 2
L y E SR

PtAu coating
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No evidence of microstructural evolution
(maximum Hertzian stress of 1.1 GPa)

J. F. Curry, et al., Advanced Materials (2018)




14 | Ultra-low wear rate of PtAu (3x10-? mm3/N-m)
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15 I PtAu is great, but what about environment!?
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16 I Friction Behavior in Anoxic Environments with Trace Hydrocarbons
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17 1 Hydrocarbon concentration is important (competing rates)
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18 | Hydrocarbon concentration is important (competing rates)
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steady state friction coefficient

Load Dependent Friction Behavior of DLC-PtAu Tribofilm
low load (10 mN) track
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20 I But wait! Are adsorbates the reason for low wear with PtAu in air? F
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21 ‘ What about adsorbates?! Wear of PtAu in UHV

¥ 3 RO il mi

Left Module: P | \*{ ‘?ﬁ‘f- aa ¥ q Right Module:
- Linear Reciprocator B u k H Lo - Rotary Module
- Load metering 3 il = - Dead weight

- Cryo stage (4-800K) v -5mNto10N

-10° to 10 torr

-0.1TmNto1N

-100 pm/s - 100 mm/s

- 10 kHz acquisition

- capacitive displacement
sensors & flexural
cantilevers

- 100 Hz acquisition
-100 to 10 torr
- Strain gage sensor

crossed-cylinders
and sphere-on-flat
configurations



22

wear depth (nhm)

PtAu films sliding against sapphire in UHV retain low friction/wear
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ii) hydrocarbons subject to

i) adsorbed organics chain scission under shear 7
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Albuquerque, NM:
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Sandia National Laboratories — Some Highlights
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27 1 Contact stress dependent friction of DLCs and DLC-PtAu

steady state friction coefficient
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