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A Tensor is an Multi-Way Array
Sandia
National
Laboratories

Vector
d = 1

•
•
•
•
•

Matrix
d =2

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

3rd-order Tensor
d = 3

dth-order Tensor
d > 3

$

;
• c r -

ti

0.

t4

. • ;,31: •;:\k.

r".

1/11/2018 Kolda - SIAM Invited Address @ JMM18 2



Tensors Come From Many Applications
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• Chemometrics: Emission x Excitation x

Samples (Fluorescence Spectroscopy)

• Neurosciein.c. Neuron x Time x Trial

(Calcium Imaging)

• Criminology: Day x Hour x Location x Crime

(Chicago Crime Reports)

• Meaicine: Channel x Wavelength x Time

(EEG measurements)

• Sports: Player x Statistic x Season

• Cyber-Traffic: IP x IP x Port x Time

• Social Network Person x Person x Time x

Interaction-Type

hemometric

Neuroscience

NNW

time

olda - SDSS 2019, Bellevue, WA



Tensor Decomposition: A Mathematical &
Statistical Tool for Analysis of Tensor Data
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Express the tensor as the
sum of meaningful parts,
which is the starting
point for data analysis
activities

-

Mathematics/Statistics play a role in....
• Defining the error metric
• Developing efficient algorithms

Includes visualization,
clustering, filling in
missing entries, etc.

II

Mathematical
& Statistical

Tool

t

Related Concepts
for Matrices

• Singular value
decomposition (SVD)

• Principal component
analysis (PCA)

• Independent component
analysis (ICA)

• Nonnegative matrix
factorization (NMF)

• Sparse matrix
factorization

• Matrix completion

Kolda - SDSS 2019, Bellevue, WA I



Break Tensor into Understandable Parts...
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Data Tensor
ni x n2 x n3

m

Model Tensor
ni x n2 x n3 ni x n2 x n3 ni x n2 x n3

+

Key: The parts have structure!

• • • +

ni x n2 x n3

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



Rank-1 Tensors are the "Parts"
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Given d vectors:

ak E ark for k

The outer product is

33 al o a2 • • • o ad E n1 xn2 ><•••xnd

Simpler

Pa rt

1 13 
ni x n2 x n3

n

I

a1

P(ii, 221 23) = ai(ii) a2(i2) a3(i3)

a2

45/30/2019 Kolda - SDSS 2019, Bellevue, WA 1



CANDECOMP/PARAFAC (CP) Tensor
Factorization Uncovers the Rank-1 Parts
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Images are three-
way (d = 3), but
assume all tensors

are of size

7t1 x 7Z2 x • • • x nd

WLOG, n = n1 = ••• = nd

atta

d-way data
tensor of
si0

tow-kalti

d-way low-rank
model tensor of size

t
d and rank r,
nrd storage

T

rank-one
component
j = 1

+ • • • +

rank-one
component
j = 2

rank-one
component
j=r

X M where M = Al(:, j) o A2(:, j) o • • • o Ad(:, j)
.1=1 FaceM

Rati,/ces
Low-rank: rank(M) < r < rid

Factor matrices: Ak E Thk xr for k E{1. . . d }

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970
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CP first invented in 1927
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Frank Lauren Hitchcock

MIT Professor

(1875-1957)

TEE EXPRESSION OF A TENSOR OR A POLYADIC AS
A SUM OF PRODUCTS

13y FR ANN L. HITCAOXIC

1. Addition and Multiplication.
Tensors are added by adding corresponding components. The

product of a covariant tensor N.. ip of order p into a covariant

tensor Bcv+, • sp +q of order q is defined by writing

A • • B —C • (1)
• • IP 313+4 IL • • ID .1-ci

where the product is a Covariant tensor of order p-Fg.
When no confusion results indices may be omitted giving

AB —C (10
equivalent to thc it94-q equations (1). Boldface type is convenient
for indicating that the letters do not denote merely numbers or
scalars. Products of contravariant and of mixed tensors may be
similarly defined.
A partial statement of the problem to be considered is as follows

to find under what conditions a given tensor can he expressed as
a surn of products of assigned form. A more general statement
of the problem will be given below.

2. PoIyadic form of a tensor.
Any eovariant tensor Ai, can be expressed as the sum of

a finite number of tensors each of which is the product of p covari-
ant vectors,

= h

7 ad, kali, • • ap.5, (2)

where 3.1j, etc., axe a set of hp covariant vectors. When the in-

dices il • • ean be omitted this may be written
-13

A.— asio4 • • Rpj.
f .1

The right member is now identical in appearance with a Gibbs

(2.)

F. L. Hitchcock, The Expression of a Tensor or
a Polyadic as a Sum of Products, Journal of
Mathematics and Physics, 1927

2. Polgadie form of a tensor.
Any covariant tensor Air ip can be expressed as the sum of

a finite number of tensors each of which is the product of p covari-

ant vectors,

, rp = at j, ia aAj, .• • (2)

where alj, ti, etc., are a set of hp covariant vectors. When the in-

dices ij • • can be ornitftd this may be written
j=h

A= 
3 =1

at ja2j • • ap j. (2a)

10/29/2018 Kolda - RED Lecture @ NCSU



CP Independently Reinvented (twice) in 1970
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CANDECOMP: Canonical Decomposition

PSYC6OICEIRIZA-104 SS, we 3
wiressous, 1070

ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMEN-
SIONAL SCALING VIA AN N-WAY GENERALIZATION OF

"ECKART-YOUNG" DECOMPOSITION

J. DOUGLAS CARROLL AND J1/1-,IIE CHANG

BELL TELEPHONE LABORATORIES
MURRAY RILL, NEW JERSEY

An individual differences model for multidimensional scaling is out-
lined in which Mdividuals are assumed differentially to weight the several
dimensions of a common "psychological nonce'. A corresponding method
of analysing similaritien data is proposed, involving a generalisation of
"F.ckart-Young analysie to decomposition of three-way (or higher-way)
tables. In the present cam thie decomposition is applied to s derived three-
way bible of scalar products between stimuli for individuals. This analysis
yield, sHmulto by dimensions coordinate matrix and a subjects by dimen-
sions matrix of weights. This method is illustrated with data on auditory
stimuli and on perception of nations.

There has been an interest for some time in the question of dealing
with individual differences among subjects in making similarity judgments
on which a multidimensional scaling of stimuli is to be bused. Kruskal 9681
and McGee [1961] have both incorporated different ways of dealing with
individual differences iuto their scaling procedures. Tucker and Messick
[19631 proposed an approach, which they called "Points of viow analysis,"
which is probably the most widely used method for dealing with such individ-
ual differences. In this method, intercorrelations are first computed between
subjects (based on their similarity judgments) and the resulting correlation
matrix is factor analyzed to produce a subject space. One then looks for
clusters of subjects in this eubject space, and if such clusters are found,
proceeds in one way or another to define "idealizer subjects corresponding
to clusters. (The "idealized subject" for a given cluster may be defined, for
example, by finding the pattern of similarity judgmente corresponding to a
hypothetical subject at thc cluster oentroid, by choosing the actual subject
closest to that centroid, or, most simply, by averaging the similarity judg-
ments for subjects in the given cluster.) The similurities for these "idealized
subjecte are then, individually and independently, subjected to multi-
dhnensional scaling.

This approach has beea criticized by a number of people, most reeently
by Ross [1966j (see Cliff, 1968, for a reply to Ross's criticiam and a further
discussion of the "idealized individuate interpretation of "Points of view

283

J. Douglas Carroll Jih-Jie Chang
Bell Labs Bell Labs

(1939-2011) (1927-2007)

CP: CANDECOMP/PARAFA

CP: Canonical Polyadic

Richard A. Harshman
Univ. Ontario
(1943-2008)

In 2000, Henk Kiers proposed

this compromise name

2010: Pierre Comon, Lieven DeLathauwer,

and others reverse-engineered CP,

revising some of Hitchcock's terminology

PARAFAC: Parallel Factors

NOTE: This manuscript mas originally published in 1970 and is reproduced here to make it
more accessible to interested scholan. The original reference is
blarshman. R. A. (1974 Foundations of the PARAFAC procedure: Models and conditions for

an **explanatory.' multimodal factor analysis. UCLA Working Papers ill Phonetics. 16. 1-
84. (University Microfilms. Ann Arbor. Michigan. No. 10.0051.

FOUNDATIONS OF THE PARAFAC PROCEDURE: MODELS AND CONDITIONS

FOR AN 'TXTLANATORY" MULTIMODAL FACTOR ANALYSIS

by

Richard A. Harslunan

UCLA

Workmg Papers in Phonenes

16

December. 1970

Many thanks to the following persons for helping me learn about lih-fie Chang: Fan Chung, Ron Graham, Shen Lin (husband), May Chang (niece), Lili Bruer (daughter).

olda - RED Lecture @ NCSU



Standard CP: Sum of Squares Error (SSE)
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+ ±

min F(X, M)
ics2

s.t. rank(M) < r

i
Shorthand for element of data tensor:

,r. fr(4, q, 4 il
-A-iz — -,,y,i, v21 • . . 1 val

J

1. Element of model low-rank tensor:
r d

m •7, - = 1: H Ak(ik,j)
j=1 k=1

(defined in terms of factor matrices)

11= set of all nd elements in tensor

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970
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Generalized CP (GCP) it Sandia
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a_
o
0

+

Hong, Kolda, Duersch, SIAM Review, 2019

Why?

• SSE: maximum likelihood
estimate (MLE) for Gaussian
distribution

xi = mi + E, E r) Ar(O, a)

X i Af(rni, a)

• Different MLEs for different
distributions

— Poisson (counts)
— Bernoulli (binary)

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



Probability Distribution
Maximum Likelihood Estimator
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Data Value

xi (--) p

"Natural" Parameter

1
xi 1 0i) where £(0i) = mi

\

Model Value

Link Function

Probability Distribution Function (PDF)

or Probability Mass Function (PMF)

min F (X, M)
iES2

s.t. rank(M) < r

f (xi,mi)

-
/
1
1
1
1
1
1
1

Maximize

Likelihood of

Data Tensor

1-1 p ( x i , Oi )
i iEQ
\

I

*
Maximize

Log-Likelihood

log p(xi, 612)

Given PDF/PMF p(x119) and link

function iv), GCP MLE by minimizing

f (x , m) = — log p(x, f-1 (m))

Hong, Kolda, Duersch, SIAM Review, 2019

........%%............,............./...........
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Gaussian MLE (Standard CP)
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PDF for Normal Distribution

p(x 1 iu, a) = e (x-11)2 / 
2a2

N/270-2

Negative log-likelihood:

Eliminate natural parameter
via link function:

Eliminate constants:

and

r 1
Link Function

Til = ill,

CI constant
L  J

- logp(4, a) ( x-u) 2
2a-2

+ 2 log(270-2)

70

60

50

,40
E
x 
30

f (x , rn) = (x2-0."21 )2 + 2 log(27a2) 20

f (x , m) = (x - rn)2

Hong, Kolda, Duersch, SIAM Review, 2019

10

- x = -2.0

- x = 0.0

- x = 3.0

-2 0 2 4

Model Value (m)

/

6
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Bernoulli MLE with Odds Link (Binary Data)
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Bernoulli random variable

x E {0,1}

= probability of a 1P

p(x 1 14 = Px (1- — PP-- x) 1 x E {0 , l }

b.b.' £ (o) =
0 ..>k:\f-1 (m)

P81— P)

m/(1+m)

Odds (m) Probability (p)

10

20%

50%

80% I

90%

[ PMF for Bernoulli Distribution

p(x 1 19) = lox (1 — 10)(1— x)

x e { 0, 1 }

Negative log-likelihood:

— log p (x

and

Link Function

rn =  p
(I- — p)

p) = log  
1 

x log  p
1 — p 1 — p

Eliminate natural parameter
via link function:

f (x, rn) = log(1 + rn) — x log rn, for rn > 0

Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



Bernoulli MLE with Odds Link (Binary Data)
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5

4

— 3
E
x 

'. 2

% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1p) = iox (1- — 
p)(1—x) , x E {0,1}

x = 0.0

x = 1.0

2 4

Model Value (m)

PMF for Bernoulli Distribution

p(x 1 p) = 
lox (1 10)(1—x)

x e { 0, 1 }

Negative log-likelihood:

— log p(x

and

r 11
Link Function

m = P 

(1 — p)
L J

p) = log  
1 

x log  p 

1 — p 1 — p

Eliminate natural parameter
via link function:

f (x , rn) = log(1 + rn) — x log rn, for rn, > 0
6

Hong, Kolda, Duersch, SIAM Review, 2019
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Bernoulli MLE with Logit Link (Binary Data)
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% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = Px (1 - 
p)(1-x) , xe{0,1}

,ok. c,
\pY0- obb f(p) = log(p / (1 - p))

, c i k V C1 (m) = en / (1 + cm)

Log-Odds(m) Probability (p)
-M

-1.39

0

1.39

2.30

20%

50%

80% I

90%

[ PMF for Bernoulli Distribution

p(xl p) = lox (1 - 10)(1- x)

x e { 0, 1 }

Negative log-likelihood:

— log p(x

and

Link Function

m = log (1%)

p) = log  
1 

x log  p
1 - p 1 - p

Eliminate natural parameter
via link function:

f (x , m) = log(1 + ern) — xrn for rn E

Hong, Kolda, Duersch, SIAM Review, 2019
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Bernoulli MLE with Logit Link (Binary Data)
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% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = iox (1 — p)(1-x) 1 xE{0,1}

5

4

--- 3
E
x 
`.- 2

1

0
-4 -2 0 2

Model Value (m)

x = 0.0

x = 1.0

[ PMF for Bernoulli Distribution

p(x 1 p) = px (1 — 10)(1-x)
x e {0 ,1}

Negative log-likelihood:

— log p(x

and

Link Function

rn = log (1%)

p) = log  
1 

x log  p
1 — p 1 — p

Eliminate natural parameter
via link function:

f (x, TO = log(1 + ern) — xrn for rn E
4

Hong, Kolda, Duersch, SIAM Review, 2019
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Sampling of Loss Functions
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30

20

10

Gaussian

Standard31
/ ir •

-5 0
m

Bernoulli - Odds Lin

5

4

3

2

1

x- 0.0
x= 1.0

Binar7-1
(Odds Link)
m > 0
  —

0 
0 2 4

m

2.5

2

1.5

1

0.5

Huber (A=0.25)

1'4
"Robust"

-5

m

Bernoulli - Logit Link

5

x= 0.0
x= 1.0

p(Loginaryit Link)

10

6

2

Gamma

x= 0.3
x= 1.0
x= 1.8

10

8

6

g 4

v

0 Nonnegative
-2 Data
0 2

> 0

Rayleigh

Poisson

x= 0.3
x= 1.0
x= 1.8

2R

15

eta Divergence ({.3=0.5)

Nonnegative -
Data

-
2 in > 0 2

x= 0.3
x= 1.0
x= 1.8

m

10 
Poisson - Log Link

- Count Data 1
(Identity Link)
m > 0

0 4 2 4

m m
Hong, Kolda, Duersch,

Nonnegative
Data

(not MLE)
_ m > 0

4 6

rn

10-
Negative Binomial (m3)

8

-g• 6

Count Data

t 
(Log Link)

2 4 6

m

o •
o

x- 1.0
x= 3.0
x= 5.0

"Failure"
Count Data
(Odds Link)

,

2 4

rn
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aannip[1@ Ir@rnacr tam H@uroochrn©@
Source: Wiiiiams, et ai. Unsupervised Discovery of Demixed, Low-dimensional
Neural Dynamics across Multiple Timescales through Tensor Components
Analysis. Neuron, 2018. https://doi.org/10.1016/Lneuron.2018.05.015 
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Activity of Single Neuron Measured Over
Time Produces Vector Data
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Thanks to Schnitzer Group @ Stanford

Mark Schnitzer, Fori Wang, Tony Kim

Microscope by

lnscopix

111 time bins

mouse neural activity via

in maze calcium imaging

Williams et al., Neuron, 2018

IN

10/29/2018 Kolda - RED Lecture @ NCSU



Multiple Neurons Measured Over Time
Produces Matrix
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Thanks to Schnitzer Group @ Stanford

Mark Schnitzer, Fori Wang, Tony Kim

Microscope by

lnscopix

C

mouse

in "maze" neural activity

Williams et al., Neuron, 2018

282 neurons x 111 time bins

10/29/2018 Kolda - RED Lecture @ NCSU



Multiple Trials Produces 3-way Tensor
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TrialM Trial1M Tria1250

282 neurons x 111 time bins x 300 trials
Williams et al., Neuron, 2018

300 Trials over 5 Days
, •

  Start West

Conditions Swap Twice

t h4k. a N.
+ Turn North

+ Turn South

10/29/2018 Kolda - RED Lecture @ NCSU 22



Example Neuron Activity
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Thin lines
show 300
individual

trials

Thick line is
average

1

0 5

0

0 5

0

Neuron 26

20 40 60 80

Neuron 117

20 40 60 80

1

0 5

0
100 20 40 60 80

100 20 40 60 80

0.5

0

Neuron 82

100 20 40 60 80

Neuron 176

100 20 40 60 80

20 40 60 80 100
Hong, Kolda, Duersch, SIAM Review, 2019

1

0.5

0

Neuron 273

100

100

20 40 60 80 100
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Neuron Factor Vector Visualized as Bar Chart
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1

c
2
n
QJ
C

x

time

1

\ 
1 1 1

Neuron Modes Plotted as a Bar Chart

(Red Lines Correspond to Examples in Previous Slide)

c1

b1
+

a2

C9

...
ar

c,

Hong, Kolda, Duersch, SIAM Review, 2019

al
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Time Factor Vector Visualized as Line
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b1

Time (within trial) Plotted as a Line

(Dashed Line is Zero)

Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019 Kolda - SDSS 2019, Bellevue, WA 25



Trial Factor Vector Visualized as
Color-Coded Scatter Plot
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r i

.01rms."11 FL

C1 1

Rule

Change

1

1

Trial Plotted as Scatter Graph Rule
Right turn = Green Change
Left turn = Orange

Filled = Reward

Hong, Kolda, Duersch, SIAM Review, 2019
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Visualization of CP Tensor Decomposition
Shows the Factors (Vectors)
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Neuron sca ed

1 dhl

o
s_

QJ

li

time

Time Trial (Green/Orange = Turn iRight/Left, Reward = Filled)

1311 

•   '014040-0woolly owvikor

b1

a2

C2

ar

Hong, Kolda, Duersch, SIAM Review, 2019
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"Standard" CP Decomposition of Mouse
Data, aka Gaussian (f (x, m) - (x m)2 )

Sandia
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CP Tensor Decomposition "Sees" Reward
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8

Lid dd

Neuron (_!caled) 

161 I 111,J1Jh6Lok I it h rill 111

)t1 r, 

I/6li
 14.1 b ill. _,_.,__Lridlida—aLL. YLW.4. 11L~L_LWL  L 4,6 4.41

Time Trial (Green/Orange = Turn iRight/Left, Reward = Filled)
•- - -Tageotvt,?-mpour leValo — wows,

•"Vegav401,4.- -•-JoymNistiPTIVA.ST ••1110 SWolvuttemoft..• • se • 0,...,1;  jp,  
A.  * P ••• w •  It

„4,otosivegi%oletiese‘ivaiofiosab:40610
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CP Tensor Decomposition "Sees" Turn
Direction
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tilt ill,

Neuron (_!caledL 

)11111,111u

r r /
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CP Tensor Decomposition Can be Tough to
Interpret due to Negative Entries
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GCP Decomposition with Beta Divergence
= O. 5, f(x, m) = Tri + x/AlTn)

ran Sandia
National
Laboratories

2

3

4

5

6
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8
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Regression Using GCP Factors on Trial Mode

Sandia
National
Laboratories

Trial Factor Matrix is 300 x 8

Iffirtv!"..1.";, 

0.--it•-•. • rA•PA ••,, 

VfteiloC

104F-°_, °

• - et

•; • t, • 6",- • ...0

0 50 100 150 200 250 300

Look at predicting turn and reward.

Split into two groups of 150 trials.

Train regression model with 1st group.

Test with 2nd group.

Repeat 100 times.

min
0

-.test

A train „train

[A3
sto > 0.5]

Regression Errors in 100

Trials (15000 predictions)

1600

1400

1200

1000

800

600

400

200

0

Hong, Kolda, Duersch, SIAM Review, 2019
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Optimization Formulation for GCP Tensor
Decomposition

Sandia
National
Laboratories

min F (X ,M) = >: f (xi, im, z)
iES2

s.t. rank(M) < r i = multi-index

SI = all indices

• Standard CP [Hitchcock, 1927; Carrol &

Chang, 1970; Harshman, 1970]

f (x, rn) = (x—rn)2

• Poisson CP (Identity Link) [Welling &

Webber, 2001; Chi & Kolda, 2009]

f (x , TO = Hi — x log m

• Logistic CP, etc. [Hong, Kolda, Duersch,

2018]

f (x, rn) = log(rn + 1) — x log(m)

d-way data
tensor of

size nd

d-way low-rank
model tensor of size

nd and rank r

X pc:J., M where

Low-rank:

Factor matrices:

+

rank-one
component
j = 1

rank-one
component
j = 2

rank-one
component
j = r

r

M = Ai(:, j) o A2(:,j) 0 • • • o Ad(:1j)
j=1

rank(M) < r < Tici

Ak E --elk xr for k E {1, . . . , d }

WLOG, n = n1 = • • • = nd

Kolda - SDSS 2019, Bellevue, WA



Gradient-based Optimization
for Fitting the GCP Model

Sandia
National
Laboratories

o_ min F(X, M)
ies2

s.t. rank(M) < r

f (xi, mi)

Define: Elementwise partial gradient tensor,
same size as data tensor = Ild

/

f
yi = 

Om 
(xi, rni)

Define: Khatri-Rao product in all modes but
one of size 0-1 x r

Zk = Ad ® • • • ® Ak+1 Ak-1 • • A1

Gradients computed via a sequence of matricized-

tensor times Khatri-Rao product (MTTKRPs):

G.
OF

Y(k)Zk for k =
OAk

gradient for mode

k factor matrix of

size n x r

1, •

tensor unfolded in

mode k into matrix

of size n x nc1-1

RP

MTTKRPs can be computed efficiently...

• Bader & Kolda, SISC, 2007 — Dense and sparse
• Phan, Tichavsky, Cichocki, 2013 — Sequence

• Smith et al., IPDPS 2015 — Sparse
• Kaya & Ucar, SC 2015 — Sparse
• Li et al., IPDPS 2017 — Sparse

• Hayashi et al., 2017 — Dense
• Ballard, Knight, Rouse, 2017 — Dense
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Stochastic Gradient Descent (SGD) for GCP

Sandia
National
Laboratories

1
10

min F (x)

Gradient Descent (GD)
a = learning rate

x(t+1) 
= x

(t) 
— a g(t)

Stochastic Gradient Descent (SGD)

x(t+1) = x(t) — ag- (t)
, [- j(t)] g(t) _ V F (x(t))

L
IIAdam (Kingma & Ba, 2015)

Adaptive momentum SGD

rStandard gradient

.._

  a k = -- 7 . - (k)Zk
Stochastic gradient

Gk = Y(k)Zk

yz = 
Of 

(xt, TOOM

.

.

Cost: 0 (rnd) flops

Cost: 0 (rs) flops -.

Choose stochastic sparse Y-tensor

such that

nnz0 < s < nd

By linearity of expectation: lE[Gd = Gk

 J

}
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Uniform Sampling
Sandia
National
Laboratories

-M- -W-

Goal: Random sparse tensor of size na that equals the "Y-tensor" in expectation

. ..%
i
i Sample s << Tld random tensor 1

entries (with replacement)

gi — // times i sampled
rid

-'i = gi • • Y i
s

0 f „
yi = ,rn lxi, mi)

Choosing s , the number of sampled elements...

• Choose s = 0 (n)

• Gradient = 0 (7- s) = 0 (rn) versus 0 (rnd)

Downside...

• If data tensor is sparse, few entries
corresponding to nonzeros will be chosen
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Stratified 0/1 Sampling
Sandia
National
Laboratories

Goal: Random sparse tensor of size na that equals the "Y-tensor" in expectation

Sample p nonzeros and q zeros.

pi # times nonzero i sampled
qi // times zero i sampled

(pi • — qi ()71 -

o
aJ
_c

yi = • yi

= nonzeros
// zeros

,z= (x• m-)urn

Claim: =

Proof: = E[qi] =

Xi = 1  Hth 113,11 •

Xi = 0 Erth]

p

q

• Yi Yi

• Yi Yi

Explicit List

Needell, Srebro, and Ward
(2013) justify biased sampling
toward functionals with
higher Lipschitz smoothness
constants to reduce the
variance in the stochastic
gradient.

C12
zeros

Implicit List (Requires Rejection Sampling)
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Semi-Stratified 0/1 Sampling
Sandia
National
Laboratories

Goal: Random sparse tensor of size na that equals the "Y-tensor" in expectation

Sample p nonzeros and q assumed zeros.

- // times nonzero i sampled
= # times "zero" i sampled

o
aJ
_c

= nonzeros
= // zeros

- (77+ () 
=Pi • • (yi — ci) + qi • q ci with ci 

f 
am 

(0  m2)
♦

= (x- rn-)orn
Explicit List

Claim:

Proof:

-14 [ =

[13i] = 7 7-4[4i] =  
T1 ((+ 77

( 
)
77+0 

xi = 0 Erfii] = E[4,i] Yi = Yi

Xi = 1 _trfii] = E[Pi] • — • (yi — ci) lE[iii] •   • ci = yi

Ci 2
zeros

Implicit List
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GCP with Stochastic Optimization
Sandia
National
Laboratories

Nonconvex problem
No guarantees of finding
minimizer

N Using Adam (Kingma & Ba, 2015)
Default parameters

Some tweaks for checking
convergence

N Past work on recommender
systems uses SGD but ignores
zeros

Gemulla, Nijkamp, Hass, Sismanis,
KDD'11

Zhuang, Chin, Juan, and Lin,
RecSys'13

N Past work on streaming uses
SGD but data appears one slice
at a time

Mardani, Mateos, Giannakis, IEEE
TSP 2015

Maehara, Hayashi, Kawarabayashi,

3 
x 107

2

1

.
o
o -2
o

-4

-5

-6

-7
0

initial step = 0.01

t
I

I
I
I

I
I

I
I

,
\ loss

esTimated
'with

100,000
fixed

sartipies __

epoch = 1000 iterations

i i
. ,,_
4. -

1 1 1

decrease step if
F increases,

new step = 0.001

quit when
F increases again

-4, - -* -4, -4.

1 1
2 4 6 8 10

time (sec)

12 14 16 18
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Example on Gamma-Distributed Data
Sandia
National
Laboratories

200 x 150 x 100 x 50 Tensor with low-rank (r = 5) structure based on Gamma distribution (k = 1, 0 from model).

Gamma loss: f (x,m) = + log m. Running stochastic GCP with 25 random starts and varying numbers of samples.
rn

-5.4 
x 107

a
a)

-5.6

6 
cp -5.8

O

o

a.)

-6 2
a)

-6.4

TLIZ,
pm i‘ Wilk* )k.

s

im 1,1
`mik• 1•4

2

s
I I
h

1 1 lin
hd
"1
4 tst •

• 1:'• \

4

Dashed lines: Individual runs, Solid lines: Median,
Epoch: Asterisk (success), Dot(fail).

_

•

6

-541t ilt‘

`,
k • • -*v.

At' 5 5• • • , ...
_ _i.,4„1-•,- ...

  it.,eit- 4 5 \ % \ % *Ili
• % • k% • % . k

•‘` h\‘‘, . ‘
__-34 : • N. .

8

time (sec)

- -- - s‘,.;

\‘s• .%4

•

_ _ _
s • h. •
• •

------- • - •
-----

10

samples = 125
samples = 250
samples = 500
samples = 1000

—samples = 2000
  nominal (true solution)

-

, 4-46,, .7-4 -1. •
ZM. -Oee. • • • •

12 14

Success at Recovering
Underlying Generative

Factors
25

a)
CD
> 20

.215

O

n 1 0

o

_o 5
E

0
125 250 500 1000 2000

gradient samples
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Stochastic vs. Non-Stochastic
Sandia
National
Laboratories

200 x 150 x 100 x 50 Tensor with low-rank (r = 5) structure based on Gamma distribution (k = 1, 0 from model).

Gamma loss: f (x,m) = + log m. Running stochastic GCP with 25 random starts.
107

-5.4 r.

-6.4
20

Same as
prior

slide, but
rescaled
x-axis

Each asterisk is an iteration.

—*
‘4it
*, ,,

'N

O' ‘41k * , 
*

41k‘ 
\

' * 'Ak* 
*

*, _.4 * ,

** s*
*
*

•,\

**\

40 60 80 100

time (sec)

120

samples = 125
samples = 250
samples = 500
samples = 1000

samples = 2000
• IN Non-stochastic
 .nominal (true solution)

140 160 180 200
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Example on Bernoulli-Distributed Data
Sandia
National
Laboratories

3.1

200 x 150 x 100 x 50 Tensor with low-rank (r = 5) structure based on Bernoulli distribution (odds from model).

Sparse tensor, less than 0.35% dense (-500K nonzeros).

BernEoulli loss: f , = log(m + 1) — x log m. Running stochastic GCP with 25 random starts, varying # of samples.
x10

n.' 
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7D_ 3
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CD
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O
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o
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E 2.75
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•

' VA.

,
.

*4;

Dashed lines: Individual runs, Solid lines: Median,

Epoch: Asterisk (success), Dot(fail).
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Uniform Sampling is Worse than Stratified
for Sparse Tensors

Sandia
National
Laboratories

Same set-up as binary experiments, but bigger tensor: 400 x 300 x 200 x 100, 0.38% dense (9M nonzeroes).
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Chicago Crime Data
Sandia
National
Laboratories

- 4-way count tensor
6,186 Days

24 Hours of the Day

77 Community Areas

32 Crime Types

Non-zeros: 5,330,673
Storage: 0.21GB for sparse tensor

Distribution of entries
0: 98.54%

1: 1.33%

> 2: 0.12%

Obtained from FROSTT
(http://frosttio/tensors/chicago-crimen

• Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2)

GCP-Count
Rank = 10
s = 6,319

f (x , m) = m — x log m

City of Chicago Community Areas and 'Sides'
Clikago 'SAW
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Component #1
Sandia
National
Laboratories
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Component #3
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Component #6
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Aside: Estimating Higher-Order Moments via
Symmetric Tensor Factorization

Sandia
National
Laboratories

Given a set of p observations: ai E Rn , i = 1, 2, . . . , p

First-order moment (mean):

Second-order moment:

Third-order moment:

Fourth-order moment:

az o az

1 
P
-.

— >_.d ai o ai o ai
P i=1

i=

az o az o az o ai

4P°
i
1 We can compute low-

I rank (r << p)
I symmetric tensor
i estimated to higher-
I order moments...
I
I
I
i
i
i
i

Joint work with Sam Sherman, Notre Dame

••• 1.„,.....,
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