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A Tensor is an Multi-Way Array s

dth-order Tensor
Vector d >3

d=1

Matrix
d =2

3rd_order Tensor
d=3
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Tensors Come From Many Applications @“""’a“"‘es

= Chemometrics: Emission x Excitation x
Samples (Fluorescence Spectroscopy)

[Chemometrics\
1

= Neuroscience: Neuron x Time x Trial
(Calcium Imaging)

= Criminology: Day x Hour x Location x Crime
(Chicago Crime Reports)

L 5’77/;9

Sioy, wc'\ta‘"c’“/
= Medicine: Channel x Wavelength x Time
(EEG measurements) /" Crimin

neuron
|

= Sports: Player x Statistic x Season
= Cyber-Traffic: IP x IP x Port x Time

= Social Network: Person x Person x Time x
Interaction-Type \

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



Tensor Decomposition: A Mathematical & @ e, (N
Statistical Tool for Analysis of Tensor Data Laboratories =5

Includes visualization,
clustering, filling in Related COhCEptS

missing entries, etc. for Matrices

Express the tensor as the
sum of meaningful parts,
which is the starting Data_
point for data analysis Analysis - Singular value

activities * decomposition (SVD)

* Principal component
analysis (PCA)

Sum of |
Parts | « Independent component
0 analysis (ICA)
Mathematical « Nonnegative matrix
& Statistical factorization (NMF)
Tool  Sparse matrix

Mathematics/Statistics play a role in....
* Defining the error metric
* Developing efficient algorithms

factorization

* Matrix completion

5/30/2019 Kolda - SDSS 2019, Bellevue, WA
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Break Tensor into Understandable Parts... . B

X e M — Part 1 .. _|_ Part r
—
Data Tensor Model Tensor
1 X Ng X N3 N1 X Ng X N3 1 X Ng X N3 1 X No X N3 1 X Ng X N3

Key: The parts have structure!

5/30/2019 Kolda - SDSS 2019, Bellevue, WA
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Rank-1 Tensors are the “Parts”

Given d vectors:

a, € R" fork=1,...,d

The outer product is

P = ajoag---0ay € Rn1><n2><---><'n,d

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



CANDECOMP/PARAFAC (CP) Tensor @ ﬁggg‘:,aa,. I
Factorization Uncovers the Rank-1 Parts raboretones =1

Data Low-Founk Model

/Images are three-\ / / é

way (d = 3), but

assume all tensors
| — + + et
are of size X oM b
N1 XnNng X+ XNy
|4 ) & J ‘
5 7 | | \
WLOG, n = ng=--="ny -way data -way Iow—rank. rank-one rank-one rank-one
model tensor of size component component component
j= j=2 j=7

X ~M where M:ZAl(:yj)OAQ(:aj)O"'OAd(:aj)

j=1 Factor /
d Matrizes
Low-rank: rank(M) <r < n

Factor matrices: Ajp € R™ ™" for ke {1,...,d}

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970
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CP first invented in 1927

Frank Lauren Hitchcock
MIT Professor
(1875-1957)

THE EXPRESSION OF A TENSOR OR A POLYADIC AS
A SUM OF PRODUCTS

By Fraxx L. Hitcroock

1. Addition and Multiplication.

Tensors are added by adding corresponding components. The
product of a covariant tensor Air‘ip of order # inio a covariant
tensor By ,,..4, ,, of order g is defined by writing
A B i =Ci iy (1
where the product C;..5 . is a covariant tensor of order p+g.
When no conifusion results indices may be omitted giving

AB=C . (1a)

equivalent to the #° ™ equations (1). Boldface type is convenient
for indicating that the letters do not denote merely numbers or
scalars. Products of contravariant and of mixed tensors may be
similarly defined.

A partial statement of the problem to be considercd is as follows:
to find under what conditions a given tensor can be expressed as
a sum of products of assigned form. A more general statement
of the problemn will be given below,

2. Polyadic form of a tensor.
Any covariant tensor Aj ..y, can be expressed as the sum of
a finite number of tensors each of which is the produet of p covari-

ant, vectors,

i=h )
‘”fptjgu a4, i, 32,4, * * Apj, ip (2)
where a,5, 4, cte., are a set of hp covariant vectors. When the in-

dices 11 * - 4, can be omitted this may be written
j=h
A.:;Ela‘jazj ‘o Bpj (2.)

The right member is now identical in appearance with a Gibbs
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F. L. Hitchcock, The Expression of a Tensor or
a Polyadic as a Sum of Products, Journal of
Mathematics and Physics, 1927

2. Polyadic form of a tenser.
Any covariant tensor A; ..,
a finite number of tensors each of which is the product of ¢ covari-

ant wvectors,

can be expressed as the sum of

i=h
Aj i, = -31 agj, 4z, 4, * * Apj, iy (2)
a= .
where a;;, 5, etc,, are a set of hp covariant vectors. When the in-

dices 175 - - 7,, can be omittzd this may be written
i=h v
A= T ajay - ap;. (2.)
j=1 -

Kolda - RED Lecture @ NCSU




CP Independently Reinvented (twice) in 1970

CANDECOMP: Canonical Decomposition

PSYCHOMBTRIKA—VOL. 35, No. 3
seprEMBEs, 1970

ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMEN-
SIONAL SCALING VIA AN N-WAY GENERALIZATION OF
“ECKART-YOUNG" DECOMPOSITION

J. Dovaras CarrouL aAND Jin-Jie CHANG

BELL TELEPHONE LABORATORIES
MURRAY HILL, NEW JERSEY

oln ‘psy A
.,...l. 'P“”

of \
“Eckart-Young anal; to decomposition of thr»wl (or higher-way)
uhln.[numptmnty:.mih-dewmpanmn lpplgnl_i'{:.dmyodlhnyp-

lined in wi d diff to wuchgl.ho
o v

stimuli and on pcmephon o( nations.

There has been an interest for some time m the quest.lon ol dealmg
with individual diff among subj in
on which a multidimensional sealing of stimuli is to be based. Kmknl [1968]
and McGee [1968] have both incorporated different ways of dealing with
individual differences into their scaling procedures. Tucker and Messick
[1963] proposed an approach, which they called “Points of view analysis,”
which is probably the most vndely used mechod for dealing with such individ-
ual diff In this meth ions are first computed between
aub]ecta (based on their similarity judgments) and the resulting correlation
mst.nx is factor sm-lyned to produce a subject space. One then looks for

of subj in this subject space, and if such ehuhn are found
proceeds in one way or another to deﬁna “idealized”
to cl (The “idealized subject” for a gwen clusber my be deﬁned, for
example, by finding the 2 of simil ng to a

hypothetical subject at the cluster nentmld, by chouung the actual subject
closest to that centroid, or, most simply, by averaging the similarity judg-
ments for subjects in the given cluster.) The similarities for these “idealized
subjects” are then, individually and independently, subjected to multi-

dimensional scaling.
This h has been criticized by a ber of people, most recently
by Ross llDﬂG] (sea Chﬂ', 1968, for a reply to Ross’s criticism and a further
jion of the “idealized individuals” interpretation of “Points of view

283

J. Douglas Carroll
Bell Labs
(1939-2011)

CP: CANDECOMP/PARAFAC

CP: Canonical Polyadic

JihQJie Chang
Bell Labs
(1927-2007)

Richard A. Harshman
Univ. Ontario
(1943-2008)

In 2000, Henk Kiers proposed
this compromise name

2010: Pierre Comon, Lieven DelLathauwer,
and others reverse-engineered CP,
revising some of Hitchcock’s terminology

Sandia
National
Laboratories

PARAFAC: Parallel Factors

NOTE: This ipt was originally published in 1970 and 1s reproduced here to make it
more accessible to interested scholars. The original reference is
R.A. (1970). Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics. 16, 1-
84, (University Microfilms, Ann Arbor, Michigan, No. 10.085).

FOUNDATIONS OF THE PARAFAC PROCEDURE: MODELS AND CONDITIONS

FOR AN "EXPLANATORY" MULTIMODAL FACTOR ANALYSIS

by
Richard A. Harshman

UCLA
Working Papers in Phonetics
16

December, 1970

Many thanks to the following persons for helping me learn about Jih-Jie Chang: Fan Chung, Ron Graham, Shen Lin (husband), May Chang (niece), Lili Bruer (daughter).

10/29/2018
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Standard CP: Sum of Squares Error (SSE) .

5/30/2019

Standard CP

min F'(X, M) = E:(a:Z —m;)?

=Y.
s.t. rank(M) < r

Shorthand for element of data tensor:

Lin— x(’il,’l:g, D ,id)

/Element of model low-rank tensor: \

r d
=> ][ Ax(ir. )

j=1 k=1
K(defined in terms of factor matrices) Y,

( R\

Q = set of all n? elements in tensor

N .

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970

Kolda - SDSS 2019, Bellevue, WA




Generalized CP (GCP)

5/30/2019

+ 4

GCP

min F (X, M) =

s.t. rank(M) < r

Hong, Kolda, Duersch, SIAM Review, 2019

Kolda - SDSS 2019, Bellevue, WA
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Why?

SSE: maximum likelihood
estimate (MLE) for Gaussian
distribution

r; =m; ¢, e ~N(0,0)
ZBZ'NN(mi,O')

Different MLEs for different
distributions

— Poisson (counts)
— Bernoulli (binary)




Probability Distribution = @ﬁ&"iﬂ‘ﬁay
Maximum Likelihood Estimator Laboratores |

Data Value Natiural Parameter Model Value Maximize / - v o )M

! | I Likelihood of ! laximize :

g ~ p($i|0i) where f(@i) = m; f Data Tensor ‘ ' ” Log-Likelihood Lf

>\ ) [ l I

"‘ I | ) y |

/ Link Function " | | p(ZEi, 92) : H § : lOg p(aj?»? 0%) :

Probability Distribution Function (PDF) l 1€Q) F ZGQ o -
or Probability Mass Function (PMF) |

Given PDF/PMF p(x|6) and link
function £(6), GCP MLE by minimizing

f(z,m) ~H(m))

min F'(X, M) = Zf (i, m;)

1E£)
s.t. rank(M) <r

GCP

— = logp(x,ﬁ

Hong, Kolda, Duersch, SIAM Review, 2019
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Gaussian MLE (Standard CP) () e,

PDF for Normal Distribution Link Function 70 | S . 2.0
e—(z—p)*/20° and m = [ 50 —x=00
plz|p.o) = ——=; =
N o constant
50 3
—u)* 2 4
Negative log-likelihood: —log p(x|p,0) = <x2(;zb) + %log(27ra ) c 0
<
307
. —m)? 1 2
Eliminate natural parameter flz,m) = (w%’";) + Llog(2m0?) 20 &
via link function:
10|
imi - f@,m) = (z = m)’
Eliminate constants: , M) = m . N - X
-4 -2 0 2 4 6
Hong, Kolda, Duersch, SIAM Review, 2019 Model Value (m)

5/30/2019 Kolda - SDSS 2019, Bellevue, WA
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Link Function

Bernoulli MLE with Odds Link (Binary Data)

~ Bernoulli random variable
é x € {0,1}

PMF for Bernoulli Distribution
(1-z)

p = probability of a 1 sl ) = '0{ (L _}’O) and m =
req0,1
plz|p)=p"(1-p)"™™, z€{0,1}
obgo lp)=p/(1—p) Negative log-likelihood:
1 p
—lo €T = log —— — rlog ——
gp(z|p) S BT,
% | 20% Eliminate natural parameter
1 50% via link function:
4 80%
10 909, f(x,m) =log(l+m)—xzlogm for m >0

Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019 Kolda - SDSS 2019, Bellevue, WA
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Bernoulli MLE with Odds Link (Binary Data) @ rahoretores TR

Bernoulli random variable

s

x € {0,1}

PMF for Bernoulli Distribution

Link Function
(1-z)

p = probability of a 1 p(z|p) =p*(1=p) and m =
. re{0,1}
plz|p)=p"(1-pH"=", ze{0,1}
5 . .
—x=0.0 Negative log-likelihood:
4 —x =1.0|]
1
—logp(x | p) = log —— — xlog ——
€3 i 1—0p 1—0p
X
=27 Eliminate natural parameter
via link function:
1 L
5 , , f(x,m) =1log(l+m)—zlogm for m >0
0 2 4 6

Model Value (m)

Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019
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Link Function

Bernoulli MLE with Logit Link (Binary Data)

~ Bernoulli random variable
é x € {0,1}

PMF for Bernoulli Distribution
(1-z)

p = probability of a 1 sler] ) = i =a) and m = log ‘(15,))
: re{0,1}
p(z|p)=p"1-p"=", ze{0,1}
X, \
»°¢‘}0be Up) =log(p/(1—p)) Negative log-likelihood:
. 1
—logp(x | p) = log —— — xlog —"—
—p 1—p
-1.39 20% Eliminate natural parameter
0 50% via link function:
1.39 80%

flx,m) =log(l+e™)—am for meR

Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019 Kolda - SDSS 2019, Bellevue, WA
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Bernoulli MLE with Logit Link (Binary Data) @ aborstos R

~ Bernoulli random variable
@6 x € {0,1}

PMF for Bernoulli Distribution

Link Function

p = probability of a 1 p(z|p) = p"(1 - p) and | = log 2
re{0,1}
p(x|p)=p"(1-p)"'™", ze€{0,1}
5 . . |
4 :i : (1)8 Negative log-likelihood:
1 p
—logp(z|p) =log —— — xlog ——

Eliminate natural parameter
via link function:

flx,m) =log(l+e™)—am for meR

4 -2 0 2 4

Model Value sm ! Hong, Kolda, Duersch, SIAM Review, 2019

5/30/2019 Kolda - SDSS 2019, Bellevue, WA



Sandia ‘
National ||
Laboratories

™

Sampling of Loss Functions

Gaussian Huber (A=0.25) 10 Gamma 10 Rayleigh 2Eeta Divergence (/3=0.5)
30 xi -1.0 ‘,’* 25| xi -1.0 "  8 xi 0.3 8 | xf 0.3 | xi 0.3
x= 0.0/ \ x= 0.0, x= 1.0 x= 1.0 15 x= 1.0
x= 1.0 2|\ x= 1.0 | 5 x= 1.8 6! x= 1.8 x= 1.8
—_ / _ \ \ ,"' / o~ l — | o 1
\ [ [ \ N ! f 4 I 3
E 20 el € 1.5 |\ ok | % 4 5 15 _— & Nonnegative
© | StandardCP | = | | “Robust” | | = ,|| -\ N . Data
gty R ’ —— 0.4 . —
PN\ /771 esl NN/ = rom %" | Nonnegative | ——— (not MLE)
LG AN/ : \ \/ op Nonnegative Data r m>0
0 L 0 . 2 Data | — =
5 0 5 5 0 5 0 : 2 m=20 ¢ 2 4 6
m m | m=0 m m
Bernoulli - Odds Link 5Bemoulli - Logit Link 15 Poisson 10 Poisson - Log Link 1glagativa Binomial (r=3)
, : I
$ x= 0.0 x= 0.0/ x= 1.0 \ x= 1.0 | x= 1.0
P x= 1.0/ | 41 \ x= 1.0 10 x= 3.0 x= 3.0 8 x= 3.0
- L x= 5.0 5 ’ F x= 5.0 x= 5.0
— 'Y — 3 - — — ‘ — 6 i - -
3 3 \ \ [ | | | %
es| Binay | 2°| Binary | € | e e
~2|| (Oddslink) } =2 (togitlink) | = || _— | = | "/ CountData| 1 CountData
B0 , of N—rj | (Loglink) r | (Odds Link)
i — : CountData | ] [
0Y 0 — 53 -y - 0
0 2 4 5 0 5 o 2 a4 (Identitylink); > . & 0 2 4 6
m m m m=>0 m m

Hong, Kolda, Duersch, Simvi neview, cuis

Kolda - SDSS 2019, Bellevue, WA
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Example Tensor from Neurescience

Source: Williams, et al. Unsupervised Discovery of Demixed, Low-dimensional
Neural Dynamics across Multiple Timescales through Tensor Components

Analysis. Neuron, 2018. https://doi.org/10.1016/j.neuron.2018.05.015

10/29/2018 Kolda - RED Lecture @ NCSU



Activity of Single Neuron Measured Over @ﬁgt'}gﬁa,_ (i
Time Produces Vector Data womnes TR

Thanks to Schnitzer Group @ Stanford

. . . 111 time bins
Mark Schnitzer, Fori Wang, Tony Kim
Microscope by “
Inscopix ——
()
mouse neural activity via
in maze calcium imaging

Williams et al., Neuron, 2018

10/29/2018 Kolda - RED Lecture @ NCSU



Multiple Neurons Measured Over Time @ﬁ&"iﬂ‘ﬁm_
Produces Matrix o

Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

Inscopix -

282 neurons X 111 time bins

Williams et al., Neuron, 2018

10/29/2018 Kolda - RED Lecture @ NCSU
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Multiple Trials Produces 3-way Tensor @“"“’a‘“""s Q

#3004 rials over 5 Days
tariWest

e TurniSouth
o | N
X Turn‘No‘r'th
** Turn South

282 neurons X 111 time bins X 300 trials
Williams et al., Neuron, 2018

10/29/2018 Kolda - RED Lecture @ NCSU
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Neuron 62

Neuron 26

|

Neuron 82

0.5 | 057 057

. 5 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Thin lines

show 300
individual
trials

Thick line is
average

Neuron 249
- ’K J

0.5

Sl o I 25 . el
20 40 60 80 100 20 40 60 80 100
Hong, Kolda, Duersch, SIAM Review, 2019
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Neuron Factor Vector Visualized as Bar Chart URNREIIES S

| | | | | a]'

Neuron Modes Plotted as a Bar Chart
(Red Lines Correspond to Examples in Previous Slide)

C1 C
& / / ’ /Cr
“—= b, “—= by

= + + o4 r

neuron
=

time - -

Hong, Kolda, Duersch, SIAM Review, 2019
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Time Factor Vector Visualized as Line @lahomones

.bl

¢ Time (within trial) Plotted as a Line
(Dashed Line is Zero)

o C1 /Cz c
:\: b, “—=bs /

~ oot "

neuron

Ja
time 2 4 ar

Hong, Kolda, Duersch, SIAM Review, 2019
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Trial Factor Vector Visualized as @ S, |
Color-Coded Scatter Plot Laboratories

Rule 'T‘ Trial Plotted as Scatter Graph Rule
Change nght turn = Green Change
Left turn = Orange
Filled = Reward
C]_ C
& / / 2 /cr
== b, ‘== by e b
o .. M T
5 -+ 1 ==
é X
Jal Ja
time . § Ar

Hong, Kolda, Duersch, SIAM Review, 2019
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Visualization of CP Tensor Decomposition @ ol (I
Shows the Factors (Vectors) laboratories R

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

1 /’- o ¢
! . | | awe ' A Dbi| Cig . l '

Q
_|_
T
+

3

neuron
=
Q
[y
Qo
\v}
~
S

Hong, Kolda, Duersch, SIAM Review, 2019
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“Standard” CP Decomposition of Mouse @ﬁgt'}gi:a X
Data, aka Gaussian (f(x,m) = (x — m)?) Laboratre

euron (scaie ime ria reen/orange = iurn rig t/Le , Reward = rilie
Wfﬁi\iwmm
1 MMMMMM&W —\// i
2 L. IIJI.. L1 I‘JJ Lo h e UL \ PN L MR e, i ‘:-'Y’ (% A YT
1]'“" ‘1] | [ 3 Gl [ (. Ir” 'W'T‘[‘ '] ]'"l"l i | 1|"|' 'l" IT' L Bl kL

1 1 1 1 1 1
T T T T T T T T T T 1
/—\ M o 8 S SOSTR e SRR w
AL Ll 4 | .‘)'(’fi':;*‘»?ﬂf:‘r x : t
3 L ke b L - -
1 1 1 1 1 1

5 ’MMMMJMMWAMMM

6 Wlmmmmmmm

S ———)
1 1 Il 1 1 1
T T T T
-

T

\ Wuﬂﬁ%‘t:“mnlﬁ Pt " e '.' 7

7 bl Ll J.I.I o | .
L L a1 m]rlr“ \g=o o

> l] - .‘Illll'l .ll "le ot oy "']'l - "i
1 o T

8 L . e

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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CP Tensor Decomposition “Sees” Reward

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille
mezmm
1 MMMMM@MM&MMM —\//— e
l | I.-m *OWV.*;
2 Lo L IJJ I Il[ |||I| M ki |||||,, L \ P& o W “ “"’"M
(IR DL A B ™ ™ ‘I‘I' L D Dt R
T T T T T i o . o == U .» .I : T T
3 LA T I L L T T v-/- I S :

o2 'W__

~ T

- ?-i;)::-)&‘z-........o S

e T i i o B R S E ..........Q...Q............... A Rt o o P i

Reward!

7 Ll L - IJ.I.I
¢ ||||1]||'T]|1" ]"'Irl|"| F‘[I']rl' > -~

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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CP Tensor Decomposition “Sees” Turn @ Natoral
Direction e

euron (scaie ime ria reen/orange = iurn rig t/iLe , Reward = rilie
L-l-l-l-.ﬂﬂﬂmmmmgqp-QUQ--y-'p--
1 WMMMM@WLMMMMM —\// y
T T T T b T , vl,"v‘j}_‘"‘.:.jl. T w T T 1]
2 I1ITl|1IJﬁI]..”rIWI|lI I‘TL%I ,Fll.rll.I l'lw._r‘l ||,]I| M o \ P& o gpl o OO I N o S ® o ,"0‘:_? “0, DX

- lI"l]'Il".lll
T l|‘|' L Rl R

1 1 1 1 1 1 I
T T T T T T T T T T T
M o« ® e e VTS w
3 Al TS 2 | Bl o QI ) ;
l‘l!"”[q L 11| s
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T 1)
] - :
{{ > )
{ ( | i
3

Turn Direction

0 50 100 150 200 250 0 50 100 O 0 100 150 200 250 300
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CP Tensor Decomposition Can be Tough to @ e,
Interpret due to Negative Entries obarres

euron (scaie ime ria reen/Orange = iurn nig t/Left, Reward = Fille
Wffmzmm
: MMMMMMMMMMMM —v/— -
| | h-m — ey
2 [ L lh I|l[ |||I| - |I|||,, L \ £ T "'"‘m- fany svwm
NI DL A R ™ Ty llw' I Rl e

T n T T T T :
¥ LR %ﬁ*ﬁ%w Z— — ' ' Reward!
LA i M AL L - ’ J— ""‘"'~"‘"’l

T T T T T T T T : . :
4 MW@MMLLMMI [ MT‘“‘M w
1 1 1 1 1

' ' ' ' ' : . W \ : :
5 l | | I | | I /\ Maﬂmﬂmm, 3 Tu rn I eft
: : i : : W’ef?@sﬂ;\gi" : i W
6 Mmmmmmwmwm /\— I a———— Turn right

7 lupdbs L “Jlllll Ly o \A : > ry . - ”

A T '|le ” - Al I T ml e e
T T T T @ .l T T . :
8 MWMW £ M gy~ Turn
' ' ' ' ' P | PO e
0 50 100 150 200 250 0 50 100 0 50 100 150 200 250 200
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GCP Decomposition with Beta Divergence @ﬁ:{}‘gﬁa.

(B=0.51Ccm) = ym + x/ym) -

euron scae reen range- UI"I"I g Left, Reward = Fille

Wﬂ LRI

200, L al......
T

L% P
T

|
' o M Reward!

PP T T LT T O

4 s wwoo : xg"fﬂ"-»:m; YRR, ”“‘""‘7‘ -

oo, © 9 . ..:M%:T Turn right

6 No reward!
7 Turn left
8

0 50 100 150 200 250 0 50 100 0 50 100 150 200 250 300
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Regression Errors in 100
Trials (15000 predictions)

Regression Using GCP Factors on Trial Mode

Trial Factor Matrix is 300 X 8

S > 1600
— min “Agrainﬁ o ytrain “ 1400
P 1200
~ test test 1000
= |A > 0.5
y [ 5 B> ] 300
600
400 I
200
O = I |
Look at predicting turn and reward. .
Split into two groups of 150 trials. (;;)\’bo Q/&Q’ \éf’\é\ @6@ 30‘?’
Train regression model with 15t group. (53) .QQ}QO Qg?\ CS4 S
Test with 2" group. ?}0\
Repeat 100 times. q,?‘}
Hong, Kolda, Duersch, SIAM Review, 2019 B Turn M Reward
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Optimization Formulation for GCP Tensor

Decomposition

GCP

min F'(X, M) Zf L, ;)

1€Q)

S.t. rank(j\/[) <r \ [ = multi-index

) = all indices

Standard CP [Hitchcock, 1927; Carrol &
Chang, 1970; Harshman, 1970]

f(@,m) = (z—m)*

Poisson CP (ldentity Link) [Welling &
Webber, 2001; Chi & Kolda, 2009]

fz,m)

Logistic CP, etc. [Hong, Kolda, Duersch,
2018]

fz,m)

=m — xlogm

= log(m + 1) — x log(m)

National
Laboratories

4

: o -+ + .- 4
X L>z . M o
y o 5 0
| |

d-way data d-way Iow—rank. rank-one rank-one rank-one
te.nsorc?f modczl tensor of size component component component

sizen n® and rank r j=1 j=2 j=r

T
X ~M where MzZAl(:,j)oAg(:,j)o -0 Aqy(s, 7)

j=1

Low-rank: rank(M) <r < n®

A e R™ ™" forke{l,...,d}

Factor matrices:

WLOG,n =n; = - =ny

5/30/2019
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Gradient-based Optimization @ﬁﬁﬁﬂ‘ﬁau_
for Fitting the GCP Model Laboratories 1~

Gradients computed via a sequence of matricized-

min [ DC M Zf :vz,mz tensor times Khatri-Rao product (MTTKRPs):

1€€2
F

s.t. rank(M) < r Gy = (';?T =Yz fork=1,....d MTTKRP
k

/ ™S

GCP

Define: Elementwise partial gradient tensor, VRIEEr UieE
— mode k into matrix

same size as data tensor = n¢ gradient for mode of size n x n-1
k factor matrix of
sizenXr
of MTTKRPs can be computed efficiently...
Y Yi = 8_m (xia mz) Bader & Kolda, SISC, 2007 — Dense and sparse
Phan, Tichavsky, Cichocki, 2013 — Sequence
Smith et al., IPDPS 2015 — Sparse
Define: Khatri-Rao product in all modes but Kaya & Ucar, SC 2015 — Sparse
one of size n¢=1 x r Li et al., IPDPS 2017 — Sparse
Hayashi et al., 2017 — Dense
2y =A40 - OArt10Ak10---0O A Ballard, Knight, Rouse, 2017 — Dense
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Stochastic Gradient Descent (SGD) for GCP

30-Second Tutorial on SGD

5/30/2019

Sandia N |
Laboratories V——/\

( Ge — Y20
any

0
0 T

Cost: O(Tnd) flops

nnz(g) < s < n?

-

-
Stochastic gradient | ék; — {((k)zk Cost: O(rs) flops
°,* Choose stochastic sparse Y-tensor
=
[ ] - -~
VRN E[Y] =Y
‘ such that

By linearity of expectation: ]E[ék] = Gy,

v,
~N

)

Kolda - SDSS 2019, Bellevue, WA
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Uniform Sampling () =

- ~
4 K E §; =5
Sample s « n% random tensor ¢

i ‘. 2
| entries (with replacement) : 1€ wr,
| §; = # times i sampled - \ @
| d I >,
L [ of
I Yi = S "Yi I Y = 5 (wi,my)
\ s J om .
gt ot e e e ot e o - Choosing s, the number of sampled elements...
* Chooses = 0(n)
Claim: E[g] =Y * Gradient = 0(rs) = 0(rn) versus 0(rn%)
= ~ S Downside...
é Proof:  E[3i] = Py * If data tensor is sparse, few entries
= ~ ond corresponding to nonzeros will be chosen
Elg:] = E[si]
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Stratified 0/1 Sampling

Sample p nonzeros and g zeros.
p; = # times nonzero 7 sampled 7 = # nNoONZzeros

4

nonzeros

-

(
I
l
! g; = 7 times zero ¢ sampled ¢ = 7 zeros
. . n . C o
: Ui = (m LG _> Y . 8—f(:r:z-,mi) Explicit List
\ p q om
N e e e o e o e e Needell, Srebro, and Ward
(2013) justify biased sampling
Claim: E[g] =Y toward functionals with
~ D ~ q higher Lipschitz smoothness
- Proof: E[ z] — E[Qz] — Z constants to reduce the
g " .M variance in the stochastic
v; = 0= Elgi| = E[g] 5 “Yi = Y Implicit List (Requires Rejection Sampling)
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Semi-Stratified 0/1 Sampling

p; = ## times nonzero 7 sampled

Sample p nonzeros and q assumed zeros.

1N = 7 nonzeros

Sandia
National
Laboratories °

™

Q4

nonzeros

\
! :
I I
i q; = # times “zero” ¢ sampled ( = #£ zeros :
I
¥ . . 0 - (n+Q) : _of I
:\ Ui = Ds - b (yi —ci) + G - BV L with ¢; = a—m(o»mi) ,: y; = %(xi,mi
A e e e e e " — " — — — — — = — — — — — ’
Claim: IE[‘B] =Y
_ a p " q
> Proof: ]E[p’L] — E[QZ] - (C +
5 U, n)
jo N -, M+
= r; = 0= Ely;] = E[g;] - p Yi = Yi
=1 = B =EE] L (g — o) + Ela] - 1S e =y
T, = 1= [yZ] — [ z] . D : (yz Cz) + [ z] q Ci = Y it ik

5/30/2019
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GCP with Stochastic Optimization @lah°fﬂf°"°s

= Nonconvex problem
= No guarantees of finding

minimizer o
= Using Adam (Kingma & Ba, 2015) initial step = 0.01
= Default parameters 510"
=  Some tweaks for checking \
convergence 2r \\ : N
= Past work on recommender S decrease step if .
systems uses SGD but ignores ) ‘\ F increases,
Zeros 3 . new step = 0.001
. ESg}lﬂa, Nijkamp, Hass, Sismanis, ~ £-1- \ loss epoch = 1000 iterations 2
= Zhuang, Chin, Juan, and Lin, g2 es‘\tlmatEd .
RecSys’13 g .l 'with : |
= Past work on streaming uses [ 100.000 quit when
SGD but data appears one slice adi i ' g F increases again
at a time <L f\\z<e
= Mardani, Mateos, Giannakis, IEEE samples
TSP 2015 6
= Maehara, Hayashi, Kawarabayashi, . |
0 2

time (sec)
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Example on Gamma-Distributed Data

200 x 150 X 100 x 50 Tensor with low-rank (r = 5) structure based on Gamma distribution (k = 1, 8 from model).
Gamma loss: f(x,m) = % + log m. Running stochastic GCP with 25 random starts and varying numbers of samples.

-5.4

8 :
5 -5.6 2\
S :
m e
o G
= =
S -5.8 )
= S
-~ B
7 | i
» BN
o 6 ;t\-\'
© *\\:\“I
2 N
: =
= 6.2
®
o)

-6.4

5/30/2019

\

) NN
N NN
AT A
AN .
\Q“’\ ‘

time (sec)

_Qashed lines: Individual runs, Solid lines: Median,
poch: Asterisk (success), Dot(fail).

I

= samples = 125
samples = 250
~=samples = 500

= samples = 1000
samples = 2000
=====:nominal (true solution)

number of true solution recoveries

Sandia ‘
National ||
Laboratories *

Success at Recovering

Underlying Generative

N
(63}

20

15

10

Factors

125 250 500 1000 2000
gradient samples
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Stochastic vs. Non-Stochastic @ Laboatoies

200 X 150 X 100 X 50 Tensor with low-rank (r = 5) structure based on Gamma distribution (k = 1, 8 from model).
7Gamma loss: f(x,m) = % + log m. Running stochastic GCP with 25 random starts.

x10
54 = I NREINY: Y. I I I I | |

& N \1\\\\\\* m— samples = 125
. ot S = samples = 250
g . ) '\ o . . samples = 500
5 0.6 g - Each asterisk is an iteration. = samples = 1000 i
% ko R samples = 2000
g E ' j == Non-stochastic

8.0 =====:nominal (true solution
8 -5.8 ‘"'1 *9‘:'! - ( ) ]
3 E* (il
Py Same as N w \
n I . 3 N \ —
o OEmE: prior Teag .
R slide, but
© 3 {1
E oo k. rescal.ed |
8 ’ X-axIs

* 12
-6 4 ‘ % s a - <
20 40 60 80 100 120 140 160 180 200

time (sec)
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Example on Bernoulli-Distributed Data

200 X 150 x 100 x 50 Tensor with low-rank (r = 5) structure based on Bernoulli distribution (odds from model).
Sparse tensor, less than 0.35% dense (~500K nonzeros).
Be1r(r)1(9ulli loss: f(x,m) = log(m + 1) — x log m. Running stochastic GCP with 25 random starts, varying # of samples.
X

3.1 ‘?& T I T I l I [
IR . . o T . — samples=125 -

305 EEERER: Dashed lines: Individual runs, Solid lines: Median, —samgles=250 | Success at Recovering
@ Epoch: Asterisk (success), Dot(fail). e samples=500 Underlying Generative
a 3 samples=1000 s Factors
= ~——— samples=2000
O A ~e | TN | eSS W e e e e -~ smmmml i i 25

205 s s nominal (true solution) ||
o ’ ..— . .-;‘E;._a-—_".-. —— J-' ’ = ‘Q'_t'-" .- .-*_-_.-0_-_—..—_—:-.'—;-‘—0- - -0 Q_)
o --"‘ -.“_ _""" :- GEZ -k —e - Ko -es-38 ©
q (>) 20 L
= c |
0w 2.85 1 GEEESRCERRE i T T e S e e =] 157 \
7, S I . o UG il ol P S 3 |
o b |
= 28 10t ‘
2 - |
© i 2 |
£ 275 5 5l |
» £ “
o) = ﬁ

2.7 < -
Ill...lIII.-I.IIIIIIII.I....III...II.-...I--.----...I.l.llIIIII.....IIII..--... ..II..--I-I.IIIIII -m 125 250 500 1000 2000
2.65 : [ 1 ' ' 1 ' gradient samples
10 20 30 40 50 60 70 80
time (sec)
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Uniform Sampling is Worse than Stratified

for Sparse Tensors

Sandia
National ||
Laboratories V—

Same set-up as binary experiments, but bigger tensor: 400 X 300 X 200 x 100, 0.38% dense (9M nonzeroes).

7 Using s = 1000 samples in every case.
x10
| | I | I | [ ]
o 25 + uniform -
2 526 tratified -
— 5 on | | 8 stratifie |
) g <0 224+ ' '
[} 3 = + semi-stratified | -
g- e 822 i =s===:nominal )
= o I
@© % 101 8. 2r n
n @ 1
o Q 5f OEJ 1.8} | 4
S * g 161 , , " et .
o unif. strat.  semi-strat. unif. strat. semi-strat. i
o gradient samples gradient samples
= J
N _
) ) Ok _
8 . f‘}: 1%,} T |
— X {4¥3§3§}~$::‘_, et T
-8 \\:P' .9 o ‘*‘;‘"."*‘_:’;.:.‘."—&%%ﬁf_t***** e e e e ]
. G \"§ o . e \ %o ’.-._.-.‘*_'.“::;._-o::;.—-ot::.%.;‘ 0-::-0-..-‘0-.-::;..:—.-’.._.-...‘_‘_."‘"*"*-0-0-0—0-0-0 -—oo o
£ e i LTy M DR ot a i
\ “s‘:’ -y o-o-o-o‘-o—o—.._._._. =3 *N**
= b -0 :f\{‘k* S oo o o*.. s ;.—-‘..” T ‘*‘**N* * ke * ke ]
L‘{j s Godleq] o «—:x’g $00000tute o 000 o fit*
0'0-0-0—0-0-0—.0-0-:—0—50-0—0-.-0—0-00-. -0 @
iﬁﬁ%ﬁﬁ

80

100
Time (sec)
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Chicago Crime Data

i L] L)

= 4-way count tensor City of Chicago Community Areas and Sides’

= 6,186 Days - A\ —

= 24 Hours of the Day itk n e A : 8:::3:

= 77 Community Areas Rank =10 D e LA I Y s ol

] | s = 6,319 \ U S [R

32 Crime Types \ s u N 8:":"::":0

= Non-zeros: 5,330,673 O . it

f(x,m)=m —xlogm \ 2

’-.II n

= Storage: 0.21GB for sparse tensor
= Distribution of entries
= 0:98.54%
= 1:1.33%
= >2:0.12%
= QObtained from FROSTT
(http://frostt.io/tensors/chicago-crime/)

= Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public- — s
Safety/Crimes-2001-to-present/ijzp-q8t2) T R - -

LS Smrvey lewd] {Trenoemroe Merceizn
Dty Marth Arrariosn Devermn | SR Fa Ot LS
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©
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6
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>
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o
~
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)
1
(o]
S
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~

=1 Year)
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Application to Sparse Crime Binary Tensor
(Semi-stratified results)
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Component #1
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Areas

Date
T T [ I | | | | I | | | | | | |
15 -
10 ]
5 = =)
0 1 | 1 | 1 | I} b 1 1
N N N N N N N N N N N N N N N N N
o o o o (@] (@] o o o o o o o o o o o
o o o (e} () o o o o - i - g — - - -
- N w oS (é)] (@] ~ (0F] O o — N w BN (&) D ~
Hour of Day Top Crimes
0.8} ' '
narcotics
06/ battery
assault
041 theft
robbe
02} Y
other offense
0 "
6 12 18 24 0 0.5 1

0.6

0.5

0.4

0.3

0.2

0.1
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Component #3
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Date

Areas

N
o
|

6002 |-

O™ % R RN M N NN
o o o o o o o o
o o o o o o (] o
- N w e (&)} » ~ o
Hour of Day
08¢ ' '
0.6
047
0.2}
0
6 12 18 24

I Il 1 |
N N N N N N N N
o o o o o o o o
— — — — -— — — —_
o — N w ~ (&) D ~

Top Crimes
battery
criminal damage
theft
robbery
assault

motor vehicle theft

0.6

0.5

0.4

0.3

0.2

0.1
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0 L\ e 110 1A e ol ok a0 o il A DA et b i s o e i i N 1 A el i)
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o (] o o o o () o o - - - - - - - -
- N w B (&) (o)) ~ oo (e} o - N w ~ (&)} (o)} ~
Hour of Day | Top Crimes 04
08¢ 1
deceptive practice ST
theft 0.3
other offense
se involving children {02
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criminal damage
10.1
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— 0
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Aside: Estimating Higher-Order Moments via @ﬁgt'}g‘:a,_ (i
Symmetric Tensor Factorization rahoretores TR

Joint work with Sam Sherman, Notre Dame

Given a set of p observations: a; € R":=1,2,...,p
1 a P EE EN .,
First-order moment (mean): — Z a; ” \
Pi= We can compute low- }
I rank (r < p) [
1 <& symmetric tensor |
Second-order moment: Z—? Z a; °0a; | estimated to higher- |
i=1 order moments... =
12 1< ! What are good applications, if any?
Third-order moment: — Z a; oa;oa,; — Z b,ob;ob; [
P4 =i i
I
15 § 1 :
Fourth-order moment: E Z a;oca;oa;oa;l * Z C;0C;0C;0c)
i=1 1 r ; i
\ =1 J

/

@EEEE#
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My department is hiring statisticians! Talk to me to learn more.
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