
Embedded UQ on Emerging Computing
Architectures

4=11:1V19rICED
simuu=n-lon &
COMPLIT1110

Eric Phipps (etphippsandia.gov)
Scalable Algorithms Department

Sandia National Laboratories

2019 NNSA/ASC-CEA/DAM

June 25-27, 2019

6e)
SAND2019-xxxx

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.

EXFI SCR I-E
COMPUTING
PROJECT

Sandia National Laboratories

SAND2019-6444C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Emerging Architectures Motivate New
UQ Approaches

• Sampling-based UQ approaches traditionally
implemented as an outer loop:

— Repeatedly call forward simulation for each
sample realization

— Coarse-grained parallelism over samples

• Many important scientific simulations struggle
with emerging architectures
— Irregular memory access patterns
— Difficulty in exploiting fine-grained parallelism

• Can we improve aggregate UQ performance by
breaking the outer-loop pattern

— Reduce number of samples through gradients
computed by automatic differentiation

— Improve sampling performance through
embedded ensemble propagation

i[
Dakota

sensitivity analysis
 uncertainty quantification

optimization
parameter estimation

model
arameters

approximation/surrogate

user applInntn
(simulation)

• •
http://dakota.sandia.gov

ON Sandia National Laboratories

oft Fast Gradient Computations Reduce
14W

Aggregate UQ Cost

• FENL example in Trilinos-couplings package in Trilinos
— Simple nonlinear diffusion equation
— 3-D, linear FEM discretization on lx1x1 cube, unstructured mesh
— CG iterative solver (Belos) with smoothed aggregation AMG preconditioning (MueLu)
— PCE methods implemented by Dakota

—V • (n(x , y)V u) u2 = 0,

k(x, y) = no + NAini(x)Yi
i=1

h(u) = 1u112

DAKO iA
http://dakota.sandia.gov

http://trilinos.org

Sandia National Laboratories

Computing derivatives efficiently in large-scale
codes

• These techniques require accurate and fast evaluations of partial
derivatives

• These can always be derived and coded by-hand
— Time consuming
— Error prone

• One alternative is numerical differentiation
— Difficult to make accurate, robust
— Can be very expensive

• A better alternative is automatic differentiation
— Evaluate analytic derivatives automatically, efficiently
— Works by transforming code to compute analytic derivatives

Sandia National Laboratories

f*••I'a.m What is Automatic Differentiation (AD)?

• Technique to compute analytic
derivatives without hand-coding the
derivative computation

• How does it work -- freshman
calculus
— Computations are composition
of simple operations (+, *, sin(),
etc...) with known derivatives

— Derivatives computed line-by-
line, combined via chain rule

• Derivatives accurate as original
computation
— No finite-difference truncation

errors

• Provides analytic derivatives withouti
the time and effort of hand-coding
them

y = sin(ex x log x), x = 2

x <— 2

ex

u <— log x

v xu

w t v

y <— sin w

x
d

dx

2.000 1.000

7.389 7.389

0.693 0.500

1.386 1.693

8.775 9.082

0.605 -7.233

Sandia National Laboratories

"°' Sacado: AD Tools for C++ Applications

• Package in Trilinos
— http://trilinos.org or http://github.com/trilinos
— Open source license

• Operator overloading-based approach
— Sacado provides C++ data types implementing AD
— Type of variables in code replaced by AD data type

— AD object for each variable stores value of that
variable and its derivatives

— Mathematical operations replaced by overloaded
versions implementing chain-rule

— Expression templates reduce overhead

• Careful software engineering required to use
effectively
— Manually exploit simulation structure/sparsity
— AD only applied at "element" level

http://trilinos.org

lso-velocity adjoint surface for fluid flow in a
3D steady MHD generator in Drekar
computed via Sacado (Courtesy of T. Wildey)

Sandia National Laboratories

oft Tools and Approach Have Impacted
Many Sandia Applications

Thermal Mechanics
Semiconductors Charon

lEMPERATURE
7264

330

320

310

300

293

CFD (SPARC)

MHD (Drekar

• Quantum Devices
(QCAD)

• Circuits (Xyce)

• EM-Plasma (EMPIRE)

• Fluids (Aria)

Ice Sheets (MALI)

beta (KPa yr/m)
500

-100

110

1

0.1

0.01

Sandia National Laboratories

Kokkos Layout Polymorphism for
Performant Memory Accesses

• CPU/MIC
— Each thread accesses contiguous range

of entries
— Ensures neighboring values are in

cache

CPU Thread 0

CPU Thread 1

CPU Thread 2

CPU Thread 3

Layout Right
(Row-wise)).

• GPU
— Each thread accesses strided range

of entries
Ensures coalesced accesses
(consecutive threads access
consecutive entries)

GPU Thread-block 0

GPU Thread-block 1

GPU Thread-block 2

GPU Thread-block 3

(0,0)

(0,1)

(0,2)

(0,3)

(1 ,0)

(1 ,1)

(1 ,2)

(1 ,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Layout Left
(Column-wise)

Sandia National Laboratories

What happens when we use Sacado in Kokkos
parallel kernels?

• Derivative components always stored consecutively

- CPU: Good cache, vector performance

- GPU: Large stride causes bad coalescing

GPU Thread-block 0

GPU Thread-block 1

GPU Thread-block 2

GPU Thread-block 3

val

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Layout Left
(Column-wise)

Mrn,

/WM/1
MM/M1•1 • • •
W 0 0 0 0 0momm004040•momm000000omomm00.0•0•momm00.0•0•momm00.0•0•momm00.0•0•momm0000•0•momm00.0•0•momm00.0•0•momm00.0•0•momm00.0•0•momm0000•0•momm0040•0
om0000momm0Nommod0

Sandia National Laboratories

Want good AD performance with no modifications
to Kokkos kernels

• Achieved by specializing data structures for Sacado
scalar types
— Rank-r Kokkos::View internally stored as a rank-(r+1) array
of doubles

— Kokkos layout applied to internal rank-(r+1) array

GPU Thread-block 0

GPU Thread-block 1

GPU Thread-block 2

GPU Thread-block 3

val
N4,

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Layout Left
(Column-Row-Plane)

dx

Oil Sandia National Laboratories

immorm.
oft

Sacado + Kokkos Performance

• Performance test for measuring
Jacobian/Residual assembly
using Sacado

-V • (kVu) av • Vu 13u2 = 0

— 3-D, linear FEM discretization
— lx1xl cube, unstructured mesh
- Derived from FENL Kokkos
example (H.C. Edwards)

— Thread-parallel matrix/residual
assembly

AD Jacobian Assembly Time Relative to
Optimized Hand-Coded Jacobian

(Nonlinear 3-D Advection-Diffusion-Reaction PDE)

1.1

I= 1C Ein

E 0.9

'41 0.8
-a
LL 0.7

- Sandy Bridge

(16 Threads)

-66NVlDlA K2OX GPU

0.6 Xeon Phi 7120P

(240 Threads)
0.5 -I

8 16 24 32 40 48

Grid Size

Sandia National Laboratories

Supersonic flow past a blunt wedge

• SPARC ATDM application code
- M. Howard et al
— Structured grids

— Cell-centered finite volume scheme
Total Sensitivity Solve Time

(Haswell: 32 MPI ranks, 2 OpenMP threads/rank)

8000

7000

6000

5000

4000 -6-Embedded

I= 3000 -•-lst Order F.D.

2000
-6-2nd Order F.D.

1000

0

6000

5000

4000
e-

3000

2000

1000

0

0 4 8 12 16 20 24 28 32

Num. Parameters

Total Sensitivity Solve Time

(KNL: 32 MPI ranks, 8 OpenMP threads/rank)

0 4 8 12 16 20 24 28 32

Num. Parameters

Embedded

1st Order F.D.

2nd Order F.D.

(b) pu (c) pu (d) E

O(Pu)lON.

Meg' #1111
(a) p

(e) aPlapa

.1011

(i) ap/aum

(g) O(pv)10p. (h) OE I Op,.

(o) 0(pv)13T,,,, (p) OE 10T,

• Sandia National Laboratories

1=1_

Hierarchical Parallelism

• Layout approach was explored to
minimize code user-code changes
for Sacado

• Derivative propagation provides
good opportunities for exposing
more parallelism
- Parallelism across derivative array
- Code may not expose enough

parallelism natively (e.g., small
workset)

• Exploring modifications to Sacado,
Kokkos to map GPU thread
parallelism across derivative
calculations
- Outcome of ATDM FY16 L2 Milestone
- With Christian Trott, Eric Cyr, Matt

Bettencourt, Roger Pawlowski

Panzer Advection Kernel

T
i
m
e
 p
er
 C
el

l
(s
ec
) 1E-4

1E-5

1E-6

NVIDIA K20x GPU

(p = 50)

200 800 1400 2000 2600

Cells per Workset

Flat SFad

Flat SLFad

Flat DFad

Hier. SFad

- Hier. SLFad

Hier. DFad

Sandia National Laboratories

24.10- Embedded Ensemble Propagation
• Divide samples into small groups called ensembles

- -32 samples/ensemble

• Replace sample-dependent data with ensemble arrays
- Same templating approach as with Sacado
- Provide overloaded operators for math on ensemble

arrays

• Better exploit fine-grained hardware parallelism
- Map fine-grained threads, vector instructions across

ensemble arrays

• Improved memory access patterns
- Scatter/gathers for sample-dependent data replaced

with ensemble packed/coalesced loads/stores

• Increased re-use and reduced memory bandwidth
needs
- Non sample-dependent data stored and accessed once

per ensemble

• Reduced communication costs
- Latency of message passing amortized across

ensemble
- Fewer but larger messages

// Ensemble scalar type

template <int S>

struct Ensemble (

double val[S];

Ensemble(const double& v) for (int e=0; e<S; ++e) val[e] = v;)

Ensemble& operator=(const Ensemble& a) (

for (int e=0; e<S; ++e) val[e] = a.val[e];

return *this;

1

Ensemble& operator+=(const Ensemble& a) (

for (int e=0; e<S; ++e) val[e] += a.val[e];

return *this;

template <int S>

Ensemble<S> operator*(const Ensemble<S>& a, const Ensemble<S>& b)

Ensemble<S> c;

for (int e=0; e<S; ++e) c.val[e] = a.val[e]*b.val[e];

return c;

El Sandia National Laboratories

Techniques Prototyped in FENL Mini-App*

• Simple nonlinear diffusion equation
— 3-0, linear FEM discretization
— lx1x1 cube, unstructured mesh
— KL truncation of exponential random field model

for diffusion coefficient
— Trilinos-couplings package

2

1

Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh)

8 16 24 32

Ensemble Size

-0-Haswell

(1 NUMA, 16 threads)

Cray XK7

(1 NUMA, 8 threads)

NVIDIA K20x GPU

-e-KNC (240 threads)

—V • (K(x, AVu) = 0,

M

y) = Ko + a N/TiKi(x)y;
=

3.4

3.2

3.0

Q. 2.8

-6 2.6
al
w • 2.4

ǹ 2.2

2.0

1.8

1.6

Cray XK7 Multigrid Preconditioned CG Solve
(64x64x64 Mesh/Node)

ea
E 17IIAsi

Awa4'

-w-Ensemble Size = 4

.-Ensemble Size = 8

Ensemble Size = 16

Ensemble Size = 32

1 4 16 64 256 1024

Compute Nodes

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017 Sandia National Laboratories

oft
f•• AIL Conclusions

• Templates, operator overloading are a powerful enabling
capability for embedded analysis
— Automated code transformation for moving beyond single-

point, forward simulation

• Enables many types of advanced analysis
— Optimization
— Sensitivity Analysis
— Error Estimation
— UQ

• Kokkos integration provides effective embedded analysis
path for next-generation architectures
— Increase fine-grained parallelism
— Improved memory access patterns
— Reduced communication costs

Sandia National Laboratories

Auxiliary Slides

Sandia National Laboratories

24-4411- Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

Find u(0 such that f(u,) = 0, : C RM, density p

• (Global) Polynomial Chaos approximation:

7-1(0 rr'-'d 140 = >2, uilPi (1PilPi) 1Pi(y)1Pi(y)p(y)dy = (On
i=o

• Non-intrusive polynomial chaos (NIPC, NISP):

1 1
ui =

(on r J fi(y)1Pi(Y)1)(y)dy erdd E wkuktpi(yk), f(uk,yk) 0
(1P72) k—O

• Linear regression approach for approximating PCE coefficients
P

\

fi(yk) = Uk 11,i1Pikyk) = ttk, f (uklyk) = 0, k = 0, • • • ,Q
i=0

• Reduce number of samples by adding derivative equations

wopi(yk) = '41 k = 0, • ' m
i=0

P
alPi auk

ui (yk) = k
J=0 ay ayk

Q

Sandia National Laboratories

EMPIRE

SPARC

SIERRA
0 0 0

Applications & Libraries

•

Kokkos*
erformance portability for C++ applications

Trilinos

Multi-Core

 r

rfTTT ITT

Many-Core

DDR

APU CPU+GPU

KÓKKO; • "granule" or "grain" ; like grains of sand on a beach
*H.C. Edwards et al, https://github.com/kokkos

Kokkos Dense Matrix-Vector Product Example
template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>

void run_mat_vec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {

typedef typename ViewTypeC::value_type scalar_type; // The scalar type

typedef typename ViewTypeC::execution_space execution_space; // Where we are running

const int m = A.dimension_0();

const int n = A.dimension_1();

Kokkos::parallel_for(

Kokkos::RangePolicy<execution_space>(O,m), // Iterate over [0,m)

KOKKOS_LAMBDA (const int i) { // "[=]" (capture by value)

scalar_type t = 0.0;

for (int j=0; j<n; ++j)

t += A(i,j)*b(j);

c(i) = t;

}

);
}

// Use default execution space (OpenMP, Cuda, ...) and memory layout for that space

Kokkos::View<double**> A("A",m,n); // Create rank-2 array with m rows and n columns

Kokkos::View<double* > b("b",n); // Create rank-1 array with n rows

Kokkos::View<double* > c("c",m); // Create rank-1 array with m rows

run_mat_vec(A,b,c);

Performance Portability

Measured
Bandwidth
(GB/s)*

Expected
Throughput
(GFLOP/s)

Measured
Throughput
(GFLOP/s)

Wrong
Layout

(GFLOP/s)

Architecture Description Execution
Space

Haswell
(1 socket)

Intel Xeon E5-2698
v3, 32 threads

OpenMP 47.4 11.9 13.0 6.8

MIC Intel Xeon Phi OpenMP 147 36.8 35.9 3.4
7120P, 240 threads

GPU NVIDIA K80 Cuda 150 37.5 42.0 7.4

• m = 1e6, n=100

• Expected Throughput = Measured Bandwidth x 2 FLOPS / 8 Bytes

• Manually specify incorrect layout for "Wrong Layout", e.g.,

Kokkos::View<double**, Kokkos::LayoutRight, Kokkos::Cuda>A("A",m,n);
Kokkos::View<double*, Kokkos::LayoutRight, Kokkos::Cuda> b("b",n);
Kokkos::View<double*, Kokkos::LayoutRight, Kokkos::Cuda> c("c",m);

* Bandwidth measured through STREAM (Triad) benchmark

Sandia National Laboratories

AD Performance Portability

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p+1); II Create rank-2 array with m rows and n columns

Kokkos::View<Sacado::Fad::SFad<double,p>*> b("b",n,p+1); // Create rank-1 array with n rows

Kokkos::View<Sacado::Fad::SFad<double,p>*> c("c",m,p+1); 11 Create rank-1 array with m rows

run_mat_vec(A,b,c);

Architecture Measured Expected Measured No View
Bandwidth Throughput Throughput Specialization
(GB/s) (GFLOP/s) (GFLOP/s) (GFLOP/s)

Haswell 47.4 22.4 24.3 23.1

MIC 147 69.4 69.4 43.2

GPU 150 70.8 81.2 35.1

• m = 1e6, n=100, p = 8 (derivative dimension)

• Expected Throughput - Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

• SFad<double,p> AD data type

Sandia National Laboratories

oft
i`l= Throughput Varying Derivative Dimension

80

70

!:1 60

tt 50

Si 40
0_
-c 30

g 20
TE 10

0

NVIDIA K80 GPU

(m=10^5, n=100)

4 8 16 32

Derivative Dimension

View Spec.

No View Spec.

Sandia National Laboratories

i`l= Embedded Transient Sensitivity Analysis

u, p, t) = 0

= au
ap,

t.d. 7,
 > (u71+11 um, tn, Atn) = 0

a
Op

aF z Zz + OF
awn

n+1

+,
n

ap

• Sensitivity equations define additional (linear) equations that must
be solved after each time step
- Treat as general nonlinear problem to allow for inexact state Jacobian

and inexact linear solves

• Compute sensitivity (tangent) residual by
- Templating physics residual code on scalar type
- Instantiating templated residual on Sacado forward mode AD data

types to compute tangent
r

Z

+11
[aF OF 0F1

nau,+1 au, ap
DF OF OF
 Zn+1 Zn +
attn+1 Dun Dp

• Augment transient/pseudo-transient time stepping to solve
sensitivity equations using tangent residual computed by Sacado

Sandia National Laboratories

Collisionless, Unmagnetized Electron Plasma

• EMPIRE ATDM application
code
- M. Bettencourt et al
— Unstructured, finite element

• 1-D verification problem
- Sensitivity w.r.t. permittivity

Total Sensitivity Solve Time
(Haswell: 32 MPI ranks, 2 OpenMP threads/rank)

8000

7000

6000

5000

E 4000 -6-Embedded

3000 -0-1st Order F.D.

2000

1000

0

0 4 8 12 16 20 24 28 32

Num. Parameters

-a-2nd Order F.D.

9.10948e-15

9.10946e-15

9.10944e-15 ,

9.10942e-15
(7)
E, 9.1094e-15

zl 9.10938e-15

9.10936e-15

9.10934e-15

9.10932e-15-

9.1093e-15

9.10928e-15

ELECTRONDENSITY

ELECTRONDENSITY SENSITIVITY PER
4e-7

u,
3e-7 0-

2e-7 5
(.71

le-7 y,

0

L-141.-7„E

--4e-7

0.01 0.02 0.03 0.04 0.05 0.06 0.07 o.ba 0.09

Total Sensitivity Solve Time

(KNL: 32 MPI ranks, 8 OpenMP threads/rank)

25000

20000

E. 15000

i= 10000

5000

0 4 8 12 16 20 24 28 32

Num. Parameters

-*-Em bedded

-0-1st Order F.D.

0 1

-i-2nd Order F.D.

Sandia National Laboratories

EMPIRE Sensitivity Performance
• Collisionless, unmagnetized electron plasma verification problem (3D)
• 1st order finite differences used as benchmark
• Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)

Total Time
(Assembly + Solve) 1200

4000
1000

3500

8003000

17", 2500

°'
E 600

2000

I= 1500
Embedded

400
• Finite-Differences1000

200
500

0

0 4 8 12 16 20 24 28 32

Num. Parameters

Assembly

1800 140

1600 120
1400

100
1200

1000 ai
80

800 -.-Embedded E4.7 60

-0-Finite?Differences 40
600

400
20200

00

0 4 8 12 16 20 24 28 32

Num.,Parameters

Solve

0 4 8 12 16 20 24 28 32

Num.,Parameters

Ta ngent

0 4 8 12 16 20 24 28 32

Num.,Parameters

Embedded

Finiteglifferences

Em bedded

Finite4Differences

Theory:
3

tirne(Tangent) N(1 + int) tirne(Residual)

3

2.5

0. 2

o 1.5

OJ

12 0.5

0

Tangent/(Residual*Num. Parameters)

 •

O 4 8 12 16 20 24 28 32

Num. Parameters

-0-Sacado

-0-Theory

26
Sandia National Laboratories

14000

12000

10000

8000

6000

4000

2000

0

3000

2500

2000
7.;
-r
'g 1500

1000

500

0

EMPIRE Sensitivity Performance
• Collisionless, unmagnetized electron plasma verification problem (3D)
• 1st order finite differences used as benchmark
• KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)

Total,Time

(Assembly,+,Solve)

0 4 8 12 16 20 24 28 32

Num.,Parameters

Assembly

I

-.-Embedded

+-FiniteWifferences

-.-Embedded

+Finiteglifferences

6000

5000

4000
"rf,-

'I' 3000
E

2000

450

400

350

300

i-f•r 250

200
4.7

150

100

50

0

Solve

0 4 8 12 16 20 24 28 32

Num.-Parameters

Tangent

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Num.-Parameters Num.-Parameters

Embedded

Finite/Differences

Em bedded

Finite>Differences

Theory:
3

tirne(Tangent) N(1 + int) tirne(Residual)

3

2.5

• 2

E
O 1

•
5

c

u

a% 1
c

12 0.5

0

Tangent/(Residual*Num. Parameters)

 •

O 4 8 12 16 20 24 28 32

Num. Parameters

-0-Sacado

-0-Theory

27
Sandia National Laboratories

11.1
f•••I'a.mito-"

1

5000

4000

ZS- 3000

cj▪ 2000

1000

SPARC Sensitivity Performance
• Generic RV problem
• Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)

Total Time
(Assembly + Solve)

O 4 8 12 16 20 24 28 32
Num. Parameters

1600

1400

1200

-a 1000

• 800

• 600

400

200

0

Assembly

O 4 8 12 16 20 24 28 32
Num.,Parameters

-*-Embedded

-0-Finite-Differences

- Embedded

Fin ite?Differences

2500

2000

7 1500

E
1000

500

1200

1000

800

• 600E
400

200

0

Solve

0 4 8 12 16 20 24 28 32
Num.-Parameters

Tangent

0 4 8 12 16 20 24 28 32
Num.,Parameters

— Embedded

- FiniteMifferences

Embedded

Fin ite4)ifferences

Theory:

time(Tangent) N (1 —
3
m) time(Residual)

2

3

4,, 2.5

2 2
E
3 1.5
c
b% 1
c

12 0.5

0

Tangent/(Residual*Num. Parameters)

O 4 8 12 16 20 24 28 32
Num. Parameters

-0-Sacado

-0-Theory

28
Sandia National Laboratories

lift
f•••I'a.mito-"

3000

2500

_ 2000

E 1500

1000

500

0

1600

1400

1200

1000

e 800
i= 600

400

200

0

SPARC Sensitivity Performance
• Generic RV problem
• KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)

Total Time
(Assembly + Solve)

0 4 8 12 16 20 24 28 32

Num. Parameters

Assembly

0 4 8 12 16 20 24 28 32

Nu m.,Pa rameters

-$-Embedded

-0-Finite-Differences

• Embedded

Fin ite?Differences

1400

1200

1000

4 800
E 600

400

200

0

Solve

0 4 8 12 16 20 24 28 32

Num.,Parameters

Tangent

4 8 12 16 20 24 28 32

Num.,Parameters

Embedded

Fin ite@Nfferences

Embedded

Fin ite4)ifferences

Theory:

time(Tangent) N (1 —
3
m) time(Residual)

2

4

3.5

'7><. 3
2
0- 2.5

° 2

g 1.5
c 1

0.5

Tangent/(Residual*Num. Parameters)

 11m
-s-Sacado

—•

-0-Theory

O 4 8 12 16 20 24 28 32

Num. Parameters

29
Sandia National Laboratories

220.Speedup in EMPIRE Assembly Kernels

45

40

35

30

25

20

15

10

5

0

N

Vu =Yd UiVic6i

i=0

=1../ Upcbi

i=0

jc2' Vsch • u dSt fc2 0)u dQ

Mi • Mil Mill

• c\'c c.,"'
46`

e, e c , c•e c ,c9 c c°\<\ e ,c9 c \t> \<< c a c<<O 0 oc c.,0, ,,,.,b.c) ,Q • ,9 c,ce ,,,o'c•cy c.> ,\c.> <9. •e,..c., ,\<9.6 6<b.
6

• 95b.6<b. CO,..;c. \cc. ' 'b.9) c'
\.- \cc.

\ckc '

• Hierarchic Loop • Shared Mem • Total

ON Sandia National Laboratories

