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Emerging Architectures Motivate New
UQ Approaches 

• Sampling-based UQ approaches traditionally
implemented as an outer loop:

— Repeatedly call forward simulation for each
sample realization

— Coarse-grained parallelism over samples

• Many important scientific simulations struggle
with emerging architectures
— Irregular memory access patterns
— Difficulty in exploiting fine-grained parallelism

• Can we improve aggregate UQ performance by
breaking the outer-loop pattern

— Reduce number of samples through gradients
computed by automatic differentiation

— Improve sampling performance through
embedded ensemble propagation
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oft Fast Gradient Computations Reduce
14W

Aggregate UQ Cost

• FENL example in Trilinos-couplings package in Trilinos
— Simple nonlinear diffusion equation
— 3-D, linear FEM discretization on lx1x1 cube, unstructured mesh
— CG iterative solver (Belos) with smoothed aggregation AMG preconditioning (MueLu)
— PCE methods implemented by Dakota

—V • (n(x , y)V u) u2 = 0,

k(x, y) = no + NAini(x)Yi
i=1

h(u) = 1u112

DAKO iA
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Computing derivatives efficiently in large-scale
codes

• These techniques require accurate and fast evaluations of partial
derivatives

• These can always be derived and coded by-hand
— Time consuming
— Error prone

• One alternative is numerical differentiation
— Difficult to make accurate, robust
— Can be very expensive

• A better alternative is automatic differentiation
— Evaluate analytic derivatives automatically, efficiently
— Works by transforming code to compute analytic derivatives

Sandia National Laboratories



f*••I'a.m What is Automatic Differentiation (AD)?

• Technique to compute analytic
derivatives without hand-coding the
derivative computation

• How does it work -- freshman
calculus
— Computations are composition
of simple operations (+, *, sin(),
etc...) with known derivatives

— Derivatives computed line-by-
line, combined via chain rule

• Derivatives accurate as original
computation
— No finite-difference truncation

errors

• Provides analytic derivatives withouti
the time and effort of hand-coding
them

y = sin(ex x log x), x = 2

x <— 2

ex

u <— log x
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"°' Sacado: AD Tools for C++ Applications

• Package in Trilinos
— http://trilinos.org or http://github.com/trilinos 
— Open source license

• Operator overloading-based approach
— Sacado provides C++ data types implementing AD
— Type of variables in code replaced by AD data type

— AD object for each variable stores value of that
variable and its derivatives

— Mathematical operations replaced by overloaded
versions implementing chain-rule

— Expression templates reduce overhead

• Careful software engineering required to use
effectively
— Manually exploit simulation structure/sparsity
— AD only applied at "element" level

http://trilinos.org 

lso-velocity adjoint surface for fluid flow in a
3D steady MHD generator in Drekar
computed via Sacado (Courtesy of T. Wildey)
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oft Tools and Approach Have Impacted
Many Sandia Applications 

Thermal Mechanics
Semiconductors Charon
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Kokkos Layout Polymorphism for
Performant Memory Accesses

• CPU/MIC
— Each thread accesses contiguous range

of entries
— Ensures neighboring values are in

cache

CPU Thread 0

CPU Thread 1

CPU Thread 2

CPU Thread 3

Layout Right
(Row-wise)).

• GPU
— Each thread accesses strided range

of entries
Ensures coalesced accesses
(consecutive threads access
consecutive entries)
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What happens when we use Sacado in Kokkos
parallel  kernels?

• Derivative components always stored consecutively

- CPU: Good cache, vector performance

- GPU: Large stride causes bad coalescing
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Want good AD performance with no modifications
to Kokkos kernels

• Achieved by specializing data structures for Sacado
scalar types
— Rank-r Kokkos::View internally stored as a rank-(r+1) array
of doubles

— Kokkos layout applied to internal rank-(r+1) array

GPU Thread-block 0
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Sacado + Kokkos Performance

• Performance test for measuring
Jacobian/Residual assembly
using Sacado

-V • (kVu) av • Vu 13u2 = 0

— 3-D, linear FEM discretization
— lx1xl cube, unstructured mesh
- Derived from FENL Kokkos
example (H.C. Edwards)

— Thread-parallel matrix/residual
assembly

AD Jacobian Assembly Time Relative to
Optimized Hand-Coded Jacobian

(Nonlinear 3-D Advection-Diffusion-Reaction PDE)
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Supersonic flow past a blunt wedge

• SPARC ATDM application code
- M. Howard et al
— Structured grids

— Cell-centered finite volume scheme
Total Sensitivity Solve Time

(Haswell: 32 MPI ranks, 2 OpenMP threads/rank)
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Hierarchical Parallelism

• Layout approach was explored to
minimize code user-code changes
for Sacado

• Derivative propagation provides
good opportunities for exposing
more parallelism
- Parallelism across derivative array
- Code may not expose enough

parallelism natively (e.g., small
workset)

• Exploring modifications to Sacado,
Kokkos to map GPU thread
parallelism across derivative
calculations
- Outcome of ATDM FY16 L2 Milestone
- With Christian Trott, Eric Cyr, Matt

Bettencourt, Roger Pawlowski

Panzer Advection Kernel
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24.10- Embedded Ensemble Propagation
• Divide samples into small groups called ensembles

- -32 samples/ensemble

• Replace sample-dependent data with ensemble arrays
- Same templating approach as with Sacado
- Provide overloaded operators for math on ensemble

arrays

• Better exploit fine-grained hardware parallelism
- Map fine-grained threads, vector instructions across

ensemble arrays

• Improved memory access patterns
- Scatter/gathers for sample-dependent data replaced

with ensemble packed/coalesced loads/stores

• Increased re-use and reduced memory bandwidth
needs
- Non sample-dependent data stored and accessed once

per ensemble

• Reduced communication costs
- Latency of message passing amortized across

ensemble
- Fewer but larger messages

// Ensemble scalar type

template <int S>

struct Ensemble (

double val[S];

Ensemble(const double& v) for (int e=0; e<S; ++e) val[e] = v; )

Ensemble& operator=(const Ensemble& a) (

for (int e=0; e<S; ++e) val[e] = a.val[e];

return *this;

1

Ensemble& operator+=(const Ensemble& a) (

for (int e=0; e<S; ++e) val[e] += a.val[e];

return *this;

template <int S>

Ensemble<S> operator*(const Ensemble<S>& a, const Ensemble<S>& b)

Ensemble<S> c;

for (int e=0; e<S; ++e) c.val[e] = a.val[e]*b.val[e];

return c;

El Sandia National Laboratories



Techniques Prototyped in FENL Mini-App*

• Simple nonlinear diffusion equation
— 3-0, linear FEM discretization
— lx1x1 cube, unstructured mesh
— KL truncation of exponential random field model

for diffusion coefficient
— Trilinos-couplings package

2

1
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*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017 Sandia National Laboratories



oft
f•• AIL Conclusions

• Templates, operator overloading are a powerful enabling
capability for embedded analysis
— Automated code transformation for moving beyond single-

point, forward simulation

• Enables many types of advanced analysis
— Optimization
— Sensitivity Analysis
— Error Estimation
— UQ

• Kokkos integration provides effective embedded analysis
path for next-generation architectures
— Increase fine-grained parallelism
— Improved memory access patterns
— Reduced communication costs

Sandia National Laboratories
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24-4411- Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

Find u(0 such that f(u,) = 0, : C RM, density p

• (Global) Polynomial Chaos approximation:

7-1(0 rr'-'d 140 = >2, uilPi (1PilPi) 1Pi(y)1Pi(y)p(y)dy = (On
i=o

• Non-intrusive polynomial chaos (NIPC, NISP):

1 1
ui = 

(on r J fi(y)1Pi(Y)1)(y)dy erdd   E wkuktpi(yk), f(uk,yk) 0
(1P72) k—O

• Linear regression approach for approximating PCE coefficients
P

\

fi(yk) = Uk   11,i1Pikyk ) = ttk, f (uklyk) = 0, k = 0, • • • ,Q
i=0

• Reduce number of samples by adding derivative equations

wopi(yk) = '41 k = 0, • ' m
i=0

P
alPi  auk

ui (yk) =   k
J=0 ay ayk

Q
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EMPIRE

SPARC

SIERRA
0 0 0

Applications & Libraries

•

Kokkos*
erformance portability for C++ applications

Trilinos

Multi-Core

  r

rfTTT ITT

Many-Core

DDR

APU CPU+GPU

KÓKKO; • "granule" or "grain" ; like grains of sand on a beach
*H.C. Edwards et al, https://github.com/kokkos



Kokkos Dense Matrix-Vector Product Example
template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>

void run_mat_vec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {

typedef typename ViewTypeC::value_type scalar_type; // The scalar type

typedef typename ViewTypeC::execution_space execution_space; // Where we are running

const int m = A.dimension_0();

const int n = A.dimension_1();

Kokkos::parallel_for(

Kokkos::RangePolicy<execution_space>( O,m ), // Iterate over [0,m)

KOKKOS_LAMBDA (const int i) { // "[=]" (capture by value)

scalar_type t = 0.0;

for (int j=0; j<n; ++j)

t += A(i,j)*b(j);

c(i) = t;

}

);
}

// Use default execution space (OpenMP, Cuda, ...) and memory layout for that space

Kokkos::View<double**> A("A",m,n); // Create rank-2 array with m rows and n columns

Kokkos::View<double* > b("b",n); // Create rank-1 array with n rows

Kokkos::View<double* > c("c",m); // Create rank-1 array with m rows

run_mat_vec(A,b,c);



Performance Portability

Measured
Bandwidth
(GB/s)*

Expected
Throughput
(GFLOP/s)

Measured
Throughput
(GFLOP/s)

Wrong
Layout

(GFLOP/s)

Architecture Description Execution
Space

Haswell
(1 socket)

Intel Xeon E5-2698
v3, 32 threads

OpenMP 47.4 11.9 13.0 6.8

MIC Intel Xeon Phi OpenMP 147 36.8 35.9 3.4
7120P, 240 threads

GPU NVIDIA K80 Cuda 150 37.5 42.0 7.4

• m = 1e6, n=100

• Expected Throughput = Measured Bandwidth x 2 FLOPS / 8 Bytes

• Manually specify incorrect layout for "Wrong Layout", e.g.,

Kokkos::View<double**, Kokkos::LayoutRight, Kokkos::Cuda>A("A",m,n);
Kokkos::View<double*, Kokkos::LayoutRight, Kokkos::Cuda> b("b",n);
Kokkos::View<double*, Kokkos::LayoutRight, Kokkos::Cuda> c("c",m);

* Bandwidth measured through STREAM (Triad) benchmark

Sandia National Laboratories



AD Performance Portability

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p+1); II Create rank-2 array with m rows and n columns

Kokkos::View<Sacado::Fad::SFad<double,p>*> b("b",n,p+1); // Create rank-1 array with n rows

Kokkos::View<Sacado::Fad::SFad<double,p>*> c("c",m,p+1); 11 Create rank-1 array with m rows

run_mat_vec(A,b,c);

Architecture Measured Expected Measured No View
Bandwidth Throughput Throughput Specialization
(GB/s) (GFLOP/s) (GFLOP/s) (GFLOP/s)

Haswell 47.4 22.4 24.3 23.1

MIC 147 69.4 69.4 43.2

GPU 150 70.8 81.2 35.1

• m = 1e6, n=100, p = 8 (derivative dimension)

• Expected Throughput - Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

• SFad<double,p> AD data type

Sandia National Laboratories
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i`l= Throughput Varying Derivative Dimension
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i`l= Embedded Transient Sensitivity Analysis

u, p, t) = 0

= au 
ap,

t.d. 7,
 > (u71+11 um, tn, Atn) = 0

a
Op

aF z Zz + OF 
awn 

n+1

+, 
n 

ap

• Sensitivity equations define additional (linear) equations that must
be solved after each time step
- Treat as general nonlinear problem to allow for inexact state Jacobian

and inexact linear solves

• Compute sensitivity (tangent) residual by
- Templating physics residual code on scalar type
- Instantiating templated residual on Sacado forward mode AD data

types to compute tangent
r

Z

+11
[  aF OF 0F1

nau,+1 au, ap
DF OF OF
 Zn+1  Zn + 
attn+1 Dun Dp

• Augment transient/pseudo-transient time stepping to solve
sensitivity equations using tangent residual computed by Sacado
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Collisionless, Unmagnetized Electron Plasma

• EMPIRE ATDM application
code
- M. Bettencourt et al
— Unstructured, finite element

• 1-D verification problem
- Sensitivity w.r.t. permittivity

Total Sensitivity Solve Time
(Haswell: 32 MPI ranks, 2 OpenMP threads/rank)
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EMPIRE Sensitivity Performance
• Collisionless, unmagnetized electron plasma verification problem (3D)
• 1st order finite differences used as benchmark
• Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)
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EMPIRE Sensitivity Performance
• Collisionless, unmagnetized electron plasma verification problem (3D)
• 1st order finite differences used as benchmark
• KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)
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SPARC Sensitivity Performance
• Generic RV problem
• Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)
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SPARC Sensitivity Performance
• Generic RV problem
• KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)
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220.Speedup in EMPIRE Assembly Kernels

45

40

35

30

25

20

15

10

5

0

N

Vu =Yd UiVic6i

i=0

=1../ Upcbi

i=0

jc2' Vsch • u dSt fc2 0)u dQ

Mi • Mil Mill

• c\'c c.,"' 
46`

e, e c , c•e c ,c9 c c°\<\ e ,c9 c \t> \<< c a c<<O 0 oc c.,0, ,,,.,b.c) ,Q • ,9 c,ce ,,,o'c•cy c.> ,\c.> <9. •e,..c., ,\<9.6 6<b.
6

• 95b.6<b. CO,..;c. \cc. ' 'b.9) c'
\.- \cc.

\ckc '

• Hierarchic Loop • Shared Mem • Total

ON Sandia National Laboratories


