This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 6444C

Embedded UQ on Emerging Computing
Architectures

Eric Phipps (etphipp@sandia.qov)
Scalable Algorithms Department

Sandia National Laboratories

2019 NNSA/ASC-CEA/DAM

June 25-27, 2019

AQvANCED \\ EXASCALE
£ SmuLATENS | [ COMPUTING
EomPUTING * \ PROJECT

SAND2019-xxxx

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security - g :
Administration under contract DE-NA0003525. m Sandia National Laboratories




Emerging Architectures Motivate New
UQ Approaches

« Sampling-based UQ approaches traditionally
implemented as an outer loop:

— Repeatedly call forward simulation for each
sample realization

— Coarse-grained parallelism over samples B arr .:

Dakota
sensitivity analysis
uncertainty quantification

optimization
parameter estimation

 Many important scientific simulations struggle
with emerging architectures

— Irregular memory access patterns
— Difficulty in exploiting fine-grained parallelism

http://dakota.sandia.gov

« Can we improve aggregate UQ performance by
breaking the outer-loop pattern

— Reduce number of samples through gradients
computed by automatic differentiation

— Improve sampling performance through
embedded ensemble propagation

117! Sandia National Laboratories




Fast Gradient Computations Reduce

Aggregate UQ Cost

* FENL example in Trilinos-couplings package in Trilinos

— Simple nonlinear diffusion equation

— 3-D, linear FEM discretization on 1x1x1 cube, unstructured mesh
— CG iterative solver (Belos) with smoothed aggregation AMG preconditioning (MueLu)

— PCE methods implemented by Dakota

—V - (k(z,y)Vu) + u* =0,

M
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Computing derivatives efficiently in large-scale
codes

 These techniques require accurate and fast evaluations of partial
derivatives

* These can always be derived and coded by-hand
— Time consuming
— Error prone

* One alternative is numerical differentiation
— Difficult to make accurate, robust
— Can be very expensive

» A better alternative is automatic differentiation
— Evaluate analytic derivatives automatically, efficiently
— Works by transforming code to compute analytic derivatives

111! Sandia National Laboratories




What is Automatic Differentiation (AD)?

Technique to compute analytic
derivatives without hand-coding the
derivative computation

How does it work -- freshman
calculus

— Computations are composition
of simple operations (+, *, sin(),
etc...) with known derivatives

— Derivatives computed line-by-
line, combined via chain rule

Derivatives accurate as original
computation

— No finite-difference truncation
errors

Provides analytic derivatives without
tne time and effort of hand-coding
them

y = sin(e” + xlogx), « = 2

u «— logx
V— TU
w+—t+ov

Yy «— sinw

d

x _—

dx
2.000 | 1.000
7.389 | 7.389
0.693 | 0.500
1.386 | 1.693
8.775 | 9.082
0.605 | -7.233
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AD Tools for C++ Applications

* Package in Trilinos
— http://trilinos.org or http://github.com/trilinos
— Open source license

» Operator overloading-based approach
— Sacado provides C++ data types implementing AD
— Type of variables in code replaced by AD data type

— AD object for each variable stores value of that
variable and its derivatives

— Mathematical operations replaced by overloaded
versions implementing chain-rule

— Expression templates reduce overhead

« Careful software engineering required to use

effectively
— Manually exploit simulation structure/sparsit Iso-velocity adjoint surface for fluid flow in a
y p. 7 7 P y 3D steady MHD generator in Drekar
— AD onIy app"ed at “element” level computed via Sacado (Courtesy of T. Wildey)

(1) Sandia Ntional Laboratores




Tools and Approach Have Impacted
Many Sandia Applications

Thermal Mechanics
Semiconductors (Charon

Quantum Devices
(QCAD)

Circuits (Xyce)
EM-Plasma (EMPIRE)
Fluids (Aria)

CFD (SPARC)
Ice Sheets (MALI)

, vﬂ"&%”" s
éi;‘» ¢
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Kokkos Layout Polymorphism for
Performant Memory Accesses

« CPU/MIC - GPU
— Each thread accesses contiguous range — Each thread accesses strided range
of entries of entries
— Ensures neighboring values are in — Ensures coalesced accesses
cache (consecutive threads access

consecutive entries)

Layout Right Layout Left
(Row-wise) (Column-wise)
_—
(0,0)
©,1)
CPU Thread 0 GPU Thread-block 0 02)
(0,3)
(1,0)
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CPU Thread 1 GPU Thread-block 1 1.2
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CPU Thread 2 GPU Thread-block 2 2.2)
@3) Y
(3,0)
@3
CPU Thread 3 GPU Thread-block 3 3.2)
3.3
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What happens when we use Sacado in Kokkos
parallel kernels?

* Derivative components always stored consecutively
— CPU: Good cache, vector performance
— GPU: Large stride causes bad coalescing

Layout Right Layout Left
(Row-wise) (Column-wise)
val val
N
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31
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Want good AD performance with no modifications

to Kokkos kernels

» Achieved by specializing data structures for Sacado

scalar types

— Rank-r Kokkos::View internally stored as a rank-(r+1) array

of doubles

— Kokkos layout applied to internal rank-(r+1) array

Layout Right
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Sacado + Kokkos Performance

* Performance test for measuring
Jacobian/Residual assembly
using Sacado

—V - (kVu)+av-Vu+pBu? =0

— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh

— Derived from FENL Kokkos
example (H.C. Edwards)

— Thread-parallel matrix/residual
assembly

AD Jacobian Assembly Time Relative to
Optimized Hand-Coded Jacobian
(Nonlinear 3-D Advection-Diffusion-Reaction PDE)

o 11
! oewoaa
= —rf 3  r3 3
> 1 ‘
‘é 09 - ==Sandy Bridge
§ ‘ (16 Threads)
£ 0.8 -
° a_ LA <=-NVIDIA K20X GPU
0.7 == - -
e
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Grid Size
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-
~ = Supersonic flow past a blunt wedge

A f

(b) pu (e) pv (d) E

vy

(e) 9p/0pc (£) a(pu)/Opoc (8) 9(pv)/Bpoc (h) OE/0ps

« SPARC ATDM application code

M. Howard et al
Structured grids
Cell-centered finite volume scheme

Total Sensitivity Solve Time
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Hierarchical Parallelism

Layout approach was explored to
minimize code user-code changes
for Sacado

Derivative propagation provides
good opportunities for exposing
more parallelism

— Parallelism across derivative array

— Code may not expose enough
parallelism natively (e.g., small
workset)

Exploring modifications to Sacado,
Kokkos to map GPU thread
parallelism across derivative
calculations

— Outcome of ATDM FY16 L2 Milestone

— With Christian Trott, Eric Cyr, Matt
Bettencourt, Roger Pawlowski

Panzer Advection Kernel

Time per Cell (sec)

NVIDIA K20x GPU

(p =50)

200 800 1400 2000
Cells per Workset

2600

=-Flat SFad
-=-Flat SLFad

~Flat DFad
Hier. SFad
=+=Hier. SLFad
->-Hier. DFad
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Embedded Ensemble Propagation

Divide samples into small groups called ensembles
— ~32 samples/ensemble

Replace sample-dependent data with ensemble arrays
— Same templating approach as with Sacado

— Provide overloaded operators for math on ensemble
arrays

Better exploit fine-grained hardware parallelism

— Map fine-grained threads, vector instructions across
ensemble arrays

Improved memory access patterns

— Scatter/gathers for sample-dependent data replaced
with ensemble packed/coalesced loads/stores

Increased re-use and reduced memory bandwidth
needs

— Non sample-dependent data stored and accessed once
per ensemble

Reduced communication costs

— Latency of message passing amortized across
ensemble

— Fewer but larger messages

// Ensemble scalar type
template <int S>
struct Ensemble {
double val[S];
Ensemble (const double& v) { for (int e=0; e<S; ++e) valle]
Ensemble& operator=(const Ensemble& a) {
for (int e=0; e<S; ++e) val[e]

=v; }

= a.val[e];
return *this;

}

Ensemble& operator+=(const Ensemble& a) {
for (int e=0; e<S; ++e) val[e] += a.valle];

return *this;

| i

template <int S>
Ensemble<S> operator* (const Ensemble<S>& a, const Ensemble<S>& b) {
Ensemble<S> c;

for (int e=0; e<S; ++e) c.val[e] = a.val[e]*b.vall[e];

return c;

Sandia National Laboratories




« Simple nonlinear diffusion equation

Techniques Prototyped in FENL Mini-App’

3-D, linear FEM discretization
1x1x1 cube, unstructured mesh

KL truncation of exponential random field model

for diffusion coefficient
Trilinos-couplings package

—V - (k(x,y)Vu) =0,

M
k(x,y) =Ko +0o Z VAiki(x)yi
i=1

Speed-Up
O B N W & U1 O N

Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh)

<E=-Haswell
(1 NUMA, 16 threads)

#=Cray XK7
(1 NUMA, 8 threads)

#~NVIDIA K20x GPU

<e-KNC (240 threads)

0 8 16 24 32
Ensemble Size

Cray XK7 Multigrid Preconditioned CG Solve
(64x64x64 Mesh/Node)

3.4
3.2

-#-Ensemble Size= 4
=+-Ensemble Size =8
==Ensemble Size = 16

«~Ensemble Size = 32

1 4 16 64 256 1024
Compute Nodes

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017 1) Sandia National Laboratories




Conclusions

 Templates, operator overloading are a powerful enabling
capability for embedded analysis

— Automated code transformation for moving beyond single-
point, forward simulation

 Enables many types of advanced analysis
— Optimization
— Sensitivity Analysis
— Error Estimation
- uQ

» Kokkos integration provides effective embedded analysis
path for next-generation architectures

— Increase fine-grained parallelism
— Improved memory access patterns
— Reduced communication costs

111! Sandia National Laboratories




Auxiliary Slides




Polynomial Chaos Expansions (PCE)

« Steady-state finite dimensional model problem:
Find u(£) such that f(u,£) =0, £: Q2 — T C RM, density p
(Global) Polynomial Chaos approximation:
P

w(©) () = Ywi(©), Withy) = [ i)y ey = 5:5w?)

Non-intrusive polynomial chaos (NIPC, NISP)'
1
(¥?) <¢2

Linear regression approach for approxmatlng PCE coefficients

Zwku ¢z(yk)’ f(u 'Y ) 0

U; =

/F a(y) i (y) p(y)dy ~

ﬁ’(yk) = U — Zuz¢z(yk) = Uk, .f('ak'a yk) =0, £k=0,...,Q
1=0
Reduce number of saPmpIes by adding derivative equations

_ Q
Zuz¢z(yk):uka k:O’“.’M—Fl
21=0
1 O Oy, Q
Z 8 (yk:) 9 ’ kzoa"'aM+1
i=0 Y Yk Ifrlj ?Q’ Sandia National Laboratories



Applications & Libraries

V
Kokkos*

nerformance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

r
KOKKOQG:: “granule” or “grain” ; like grains of sand on a beach
*H.C. Edwards et al, https://github.com/kokkos




Kokkos Dense Matrix-Vector Product Example

template <typename ViewTypeA, typename ViewTypeB, typename ViewTypeC>

void run_mat_vec(const ViewTypeA& A, const ViewTypeB& b, const ViewTypeC& c) {
typedef typename ViewTypeC::value_type scalar_type; Il The scalar type
typedef typename ViewTypeC::execution_space execution_space; // Where we are running

const int m = A.dimension_0();
const int n = A.dimension_1();
Kokkos::parallel_for(
Kokkos::RangePolicy<execution_space>(0,m ), // Ilterate over [0,m)
KOKKOS_LAMBDA (const int i) { Il "[=]" (capture by value)
scalar_type t = 0.0;
for (int j=0; j<n; ++j)
t += A(i.,j)*b(j);
c(i)=t;
}
);
}

I/l Use default execution space (OpenMP, Cuda, ...) and memory layout for that space
Kokkos::View<double**> A("A",m,n); // Create rank-2 array with m rows and n columns
Kokkos::View<double* > b("b",n); // Create rank-1 array with n rows
Kokkos::View<double* > ¢("c",m); // Create rank-1 array with m rows

W s

run_mat_vec(A,b,c);




S -l "~ Performance Portability

Architecture Description Execution | Measured Expected Measured Wrong

Space Bandwidth | Throughput | Throughput Layout
(GB/s)* (GFLOP/s) (GFLOP/s) (GFLOP/s)

Haswell Intel Xeon E5-2698  OpenMP 47.4 11.9 13.0 6.8

(1 socket) v3, 32 threads

MIC Intel Xeon Phi OpenMP 147 36.8 35.9 3.4
7120P, 240 threads

GPU NVIDIA K80 Cuda 150 37.5 42.0 7.4

* m=1e6, n=100
» Expected Throughput = Measured Bandwidth x 2 FLOPS / 8 Bytes

« Manually specify incorrect layout for “Wrong Layout”, e.g.,

Kokkos::View<double**, Kokkos::LayoutRight, Kokkos::Cuda> A("A",m,n);
Kokkos::View<double* , Kokkos::LayoutRight, Kokkos::Cuda> b("b",n);
Kokkos::View<double* , Kokkos::LayoutRight, Kokkos::Cuda> c("c",m);

* Bandwidth measured through STREAM (Triad) benchmark
(i) sandia National Laboratories




- s -
-l AD Performance Portability

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p+1); // Create rank-2 array with m rows and n columns
Kokkos::View<Sacado::Fad::SFad<double,p>* > b("b",n,p+1); // Create rank-1 array with n rows
Kokkos::View<Sacado::Fad::SFad<double,p>* > c("c",m,p+1); // Create rank-1 array with m rows

/-

run_mat_vec(A,b,c);

Architecture | Measured Expected Measured No View
Bandwidth | Throughput Throughput | Specialization
(GB/s) (GFLOP/s) (GFLOP/s) (GFLOP/s)
Haswell 47 .4 224 24.3 23.1
MIC 147 69.4 69.4 43.2
GPU 150 70.8 81.2 35.1

* m=1e6, n=100, p = 8 (derivative dimension)
* Expected Throughput ~ Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

+ SFad<double,p> AD data type

(1) Sandia Ntional Laboratores
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e

:'ﬁThroughput Varying Derivative Dimension

NVIDIA K80 GPU
(m=10A5, n=100)
80
“» 70 =
> . o —
O 60 T—
—
G 50
5 40 .
5 30 =+View Spec.
= 10 ——a
0 | | |
4 8 16 32
Derivative Dimension
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Embedded Transient Sensitivity Analysis

.f(uv u,p, t) =0 L} F(un-l—launapa tn, Atn) =0

8
Op

— 0 oOF OF
ZZB—Z’ mzn+1+8u Z —|— :O

» Sensitivity equations define additional (linear) equations that must
be solved after each time step

— Treat as general nonlinear problem to allow for inexact state Jacobian
and inexact linear solves

« Compute sensitivity (tangent) residual by
— Templating physics residual code on scalar type

— Instantiating templated residual on Sacado forward mode AD data
types to compute tangent

Znt1 OF OF OF
OF OF OF
Zn = Z'n, —Zn Sr—

« Augment transient/pseudo-transient time stepping to solve
sensitivity equations using tangent residual computed by Sacado

117! Sandia National Laboratories




Collisionless, Unmagnetized Electron Plasma

- EMPIRE ATDM application

code
— M. Bettencourt et al

— Unstructured, finite element
* 1-D verification problem
— Sensitivity w.r.t. permittivity

Total Sensitivity Solve Time

(Haswell: 32 MPI ranks, 2 OpenMP threads/rank)
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EMPIRE Sensitivity Performance

» Collisionless, unmagnetized electron plasma vérification problem (3D)
 1st order finite differences used as benchmark
« Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)
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EMPIRE Sensitivity Performance

» Collisionless, unmagnetized electron plasma verification problem (3D)
« 1st order finite differences used as benchmark
 KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)
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SPARC Sensitivity Performance

* Generic RV problem
« Haswell architecture (32 MPI ranks, 2 OpenMP threads/rank)
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SPARC Sensitivity Performance

* Generic RV problem

—

 KNL architecture (32 MPI ranks, 8 OpenMP threads/rank)
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