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Motivation and Background D

=  Water distribution systems Potential Hazards Potential Impacts
face multiple chaIIenges Natural disasters Infrastructure damage
- Drought - Pipe breaks
- Earthquake - Pump failure
= The goal of a resilient system - E'S;’risanes - Tank damage
is to minimize the magnitude - Tornados Service disruption
and duration of disruption - Tsunamis
- Wildfires Loss of access to
- Winter storms facilities/supplies
" Resilience of drinking water Terrorist attacks Loss of pressure or
systems is influenced by change in water quality
= . Cyber attacks
Design Environmental impacts
= Maintenance Hazardous material
. release Financial impacts
= QOperations
= Dependence with other Climate change Social impacts
infrastructure



Water Sector Resilience Guidance

DROUGHT RESPONSE
AND RECOVERY

A Basic Guide for Water Utilities

All-Hazard Consequence
Management Planning for the
Water Sector

Preparedness, Emergency Response, and Recovery
CIPAC Workgroup

November 2009  JEIRIIETS Water Supply and Demand (ommunication and

g Management Partnerships

=

Case Studies and Videos
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FLOOD RESILIENCE

A Basic Guide for Water and Wastewater Utilities

Select a menu option below.
First time users should start with the Overview.
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Utility Specific Questions i

What type of infrastructure damage could be caused by:

A magnitude 7 earthquake (e.g., Napa Valley, CA)?

A hurricane (e.g., Harvey in TX, Maria in PR)?

A regional power outage (e.g., Northeast Blackout)?

A contamination incident (e.g., Flint MI, Elk River Spill in WV)?

A tornado (e.g., Joplin, MO)?

= How long can the system continue to provide water to customers?

= How many people will be impacted?

=  Whatis the best response in the immediate aftermath?

= Which components should be hardened to minimize future disruptions?




Infrastructure Resilience Policy ) .

Installation Energy and Water Security Policy (Army Directive 2017-07)

= Establish energy and water infrastructure requirements that ensure
continuous availability, reliability and quality.

= Preparation for extended outages, providing necessary energy and water
for a minimum of 14 days

= Microgrid/islandable capabilities

America's Water Infrastructure Act (AWIA, 2018)

= Requires drinking water systems serving more than 3,300 people to
develop

= Comprehensive water system risk and resilience assessment

= Emergency response plans that address physical and cybersecurity
threats

= Drinking Water Infrastructure Risk and Resilience Program: EPA may award
grants to increase the resilience of community water systems
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Water Network Tool for Resilience @&

WNTR is designed to analyze water distribution R
network failure and recovery WNT

Water Network Tool for Resilience

= Quantify resilience for a wide range of hazards

= Pipe breaks = Landslides

= Power outages = Hurricanes

= Contamination incidents = Cyber attacks

= Earthquakes PGA (g)

035

Epicenter

25

= Evaluate and prioritize resilience-enhancing
actions ‘o
= |solate and repair pipe breaks
= Change valve and tank operation to maintain water
service
= |nstall backup generation
= Plan flushing or water conservation mandates
= Evaluate sampling locations
= Evaluate fire fighting capacity
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WNTR Framework )

= EPANET is the industry standard for

water distribution hydraulic and water _Water
i . distribution
quality modeling network

model

= The Water Network Tool for Resilience, Sscllfier: Hydraulic

WNTR, builds on capabilities in EPANET metrics and water
and quality
EREWAIE simulation

to analvze water distribution resilience

Reservoir

Pipe Age

::::: Illlm-..- Response Disaster
SELELesases s / mitigation models
actions

Fragility curve

Probability
of damage

8
1=
8

%g) : 27,5 km (17.1 mi) ENE of Greenfield, CA
M 4.4 N3643W1I2097 Dopth 10 0km 1D: i}

3
o
8

3
(=
8

8
(=
8

0.4 0.6
Environmental change

8
[=
8

https://github.com/usepa/wntr

8
(=
8

10000

Population impacted by low water service availability
8
o
8

o

8
Time (days)




WNTR Framework =

Dacs » Getting started © Edit on GitHul

= QOpen source Python package

Getting started

To start using WNTR. open a Python console and import the package:

= Python 2/3 compatible
= Integrated development environments

= |ntegrates commonly used efficient Python
packages

= Numpy and Scipy

# Spyder (Python 3.6) = m} X

" Pa ndas File Edit Search Source Run Debug Consoles Projects Tools View Help
OsE“Ee PEBCEANCE=EEHE BX f& 9 B4
= NetworkX = : o x v o

(im] gemwg_startad.pyg £% Source Console ¥ | Object ‘wmr.gramlcs.plot_hlnramve_nemork V‘ & &

= Matplotlib, Plotly, and Folium ==

3 .
4 inp_file = 'networks/Net3.inp'
5wn = wntr.network.WaterNetworkModel(inp_file) Definition : plot_interactive_network(wn, node_attribute=None,
. . . 6 title=None, node_size=8, node_range=[None, None],

- node_cmap="Jet', link_width=1, add_colorbar=True,
u G I t re p O S I to ry’ exte n S Ive X Figure2 - a X reverse_colormap=False, figsize=[70@, 450], node_labels=True,

round_ndigits=2, filename=None, auto_open=True)
== 2N

A€ > Q=¥ Type : Function of wntr.graphics.network module
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Water Network Models

Original network

= Model contains physical layout and
system operations

= Nodes: Junctions, Tanks, Reservoirs
= Link: Pipes, Valves, Pumps

= Demands

= Controls

= Simulation options

= Generate network models from
EPANET INP files or from scratch

= Add/remove/modify components

Articulation points

= Query node/link attributes

= Skeletonize network models

= Cast Iron
Ductile Cast Iron

= Plot network attributes

=== Polyethylene

-

= Analyze network structure




Hydraulic and Water Quality Simulation @&,

= Demand-driven hydraulic simulation

= Pressure dependent demand hydraulic simulation
= Demand at a node depends on the pressure that is available at the node

50
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=  Water quality simulations that compute water age or concentration
= Simulation start/stop capabilities

= Feedback loops, cascading failure

= Monte Carlo simulation

= Parallelization
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Modeling Disruptive Incidents () i

PGA after an earthquake in 100-yr flood stage with sea levelrise in
California (USGS) Virginia (100RC)

= Define disruptive incident
= |nformed by data or a model

=  Define probability of damage

= Fragility and survival curves

= Modify the model

= Controls, demands,
components, attributes to
match each scenario

Fragility curve
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Modeling Restoration Actions () i,

Define the restoration action

Define priorities Repair Strategy Following 2014 Napa Valley Earthquake

Modify the model

Type of repair actions
Number of crews
Time to repair

Supply chain

Distance from the reservoir Number of repair crews — 5

Magnitude of leak Repairs per day —5 (120 breaks fixed in 5 days)

Number of people affected
Repairs started 24 hours after earthquake

Separate team repaired tank
Controls, demands,

components, attributes to Prioritized repairs by proximity to
match each scenario limit travel time 0.20 1

Production maximized to feed leaks  ©°15]

Boil water order for affected regions

0 2 4 6 8 10
Repairs per day




Quantifying Resilience () i

State Transition or

: “Resilience Trapezoid” plot
= Numerous metrics have been suggested P d

to quantify reliability, robustness,
redundancy, and security for water
distribution networks

Original State

F(t,)
Recovered State

System Performance Function

= Topographic metrics

Disrupted
State

F(t)

= Hydraulic metrics

Resilience Action

v

= Water quality metrics ) £t -
= Economic metrics

=  Commonly used metrics include
= Water service availability

= Population impacted by service disruption
or low pressure conditions

= Water age and chlorine residual

= Cost associated with repair and lost service

14




Earthquake Analysis (0N

. Fault line

= Based on 2014 Napa Earthquake

=
=

No Damage

o
™

= Assess water service availability
and fire fighting capacity
following an earthquake along a
NS fault that bisects a water
utility

o
o
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Compromised Source Water Analysis () i,

= Case study with the City of Poughkeepsie, NY

= Loss of source due to river contamination, treatment plant failure, winter
storm freezing intake, or power outage.

= Track water pressure and water service availability over time

= Test mitigation strategies Rigke: priassuie {psil, Holr 120
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Pipe Criticality Analysis e

= Case study with the City of P
. umber or peopie impacte
Poughkeepsie, NY individual Sipe Bl

= |dentify the population that is
impacted by low pressure
conditions caused by individual
pipe breaks

20000

= N-1 analysis e

15000

12500

= Results help prioritize
investment
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Hydraulic Connectivity Analysis L=

= Compute location of all upstream and downstream nodes

= Evaluate critical paths between water treatment plant and customers

Water treatment plant

et

Population served
by Tank 1 = 11,000

Population served
by Tank 2 = 13,000




Sensor Placement Optimization =~ @i

= Optimize the location of online sensors to minimize damage or maximize
detection capabilities

= Evaluate redundancy of sensor locations

= Related open-source Python packages, developed at Sandia: Pyomo and
Chama
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https://github.com/Pyomo

https://github.com/sandialabs/chama
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Infrastructure Dependency () ==,

= Resilience of the water system is highly
dependent on other sectors, including

= Electricity grid

= Natural gas

= Transportation network
= Cyber, communication

= Resilience analysis applied across
multiple infrastructures

= Data analytics

= Sensor placement

= Simulation and optimization

= Resilience and risk assessment
= Microgrid/islanding capabilities
= Capacity expansion

= Emergency response plans ' ‘ =
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Conclusions =

= Sandia and the EPA are developing a wide range of capabilities to help water
utilities do a “deeper dive” into understanding the resilience of their
drinking water system

= By integrating hydraulic models and resilience metrics, water utilities can
quantify the benefit of response actions and long-term mitigation strategies

=  Open-source software makes these methods available to a wide audience

= \Water utilities are invited to work with Sandia and the EPA on case studies

WNTR

Water Network Tool for Resilience

https://github.com/usepa/\WNTR
http://wntr.readthedocs.io
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