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AM parts exhibit frequent disqualifying flaws in addition to significant variability. @ ﬁant]_dial !
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28 AM AISi10Mg medium conventional tensiles 45 AM 304L medium conventional tensiles

Brittle and strong, possibly due

to oxides.
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Damage tolerant approach
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Assume all AM components have flaws

Which flaws matter?

Identify flaw types
Cracks
Voids
Bulk porosity
Microstructure-based flaws

Print intentional flaws of varying sizes and types
Predict critical flaw sizes in different regions for each flaw type

Non destructively inspect each component for critical flaws
Critical flaw size is now defined for each region of the part.
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FE model including flaw with microstructure !



316 Stainless Steel vs. AlSi10Mg Sandia
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316 Stainless Steel AlSi1l0Mg
= Ductility = 60% = Ductility = 10%
= K=120 MPavm = K=40 MPavm
= Charpy Impact toughness >120 ft-lbs = Charpy Impact toughness >8 ft-lbs

700 700 —mM™m ————F—————— : . n
—— SRA. Al Plate-A Size-C
i —— S.RA. Al Plate-B Size-C
eon 600 - S.RA. Al Plate-C Size-C ]
500 500 F
g : g
= 400 |f] 1x1mm S 400
? e
o 300l 2.5x 2.5 mm Q@ 3L
v bl
n n

e R,
| . ‘ 5
200 | - 200 |- \W o
6.25 x 6.25 mm /
L " 100 ' -
100 ——— SS316L - Size A
1

—— SS316L - Size C |

Strain (%) Strain (%)



- | 316 Stainless Steel vs. AlSi10Mg
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What about multiple voids? @ Sandia

Different build conditions can create different levels of porosity.




High throughput tensile testing, ~30 samples per hour, gives statistical distributions @ Sandia
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1. Self-aligning
‘drop-in’ grips

2. Non-contact virtual
extensometer with “live”
digital image correlation

3. Maximize software
automation to reduce
operator burden

: 1x1mm

2.5x2.5mm

B. Salzbrenner et al., J Mater. Process. Tech., 2017 6.25 x 6.25 mm



Powder reuse of AlSi1l0Mg gives different levels of porosity and tensile @ ﬁg?igﬁm
properties for each build plate. Laboratories
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Lower strength specimens have substantially more small voids (20-50 um). Sandia

National _
Laboratories I

Simply searching for voids above some diameter threshold is
insufficient.

Millions of small voids reduce ductility and strength more than a
few large voids.

Many small voids allow for straight fracture path.

We are in a density dominated regime.

Surface Crust around edge of sample. Loosely-bound powder,
surface roughness, and cracks.
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High throughput fracture surface imaging @ Sandia

= Imaged all 172 large HTT fracture
surfaces in the SEM

= Variable pressure secondary imaging

1 mm




High throughput fracture surface imaging Sandia
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surfaces in the SEM

= Imaged all 172 large HTT fracture |
= Variable pressure secondary imaging




Void identification algorithm to measure porosity on fracture surfaces ﬁa?_dial
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Contrast Adjustment & Binary

Fit With Expanded Ellipse
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= |dentify voids on a fracture surface from high throughput SEM images.
= Multistep process does more than simple thresholding.

=  Algorithm allowed ~172 fracture surfaces to be analyzed—about 10x more
than was possible before.




Compare ductility to fracture surface porosity Sandia
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= Increasing fracture surface porosity by 1% decreases ductility by 0.5%.
= Fracture porosity is NOT equivalent to density.
= Relationship between fracture surface porosity and density?



Crust and porosity effects on unloading modulus ﬁa;l_dial
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Full Area Crust Removed Porosity Removed Crust + Porosity Removed Adjusted by Ultrasound Modulus
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Crust has dominant effect, but porosity is also meaningful.

Subtracting crust and porosity gives an unloading modulus near
74 GPa (ultrasound value).

Going forward, we can correct modulus based on unloading
modulus.
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Inherent Yield stress is 160
MPa instead of 120 MPa.

Inherent Tensile strength is 280
MPa instead of 200 MPa.



Conclusions Sandiia
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1. Introducing intentional flaws to identify critical flaw size for exemplar component.
2. Small ubiquitous pores can dominate tensile behavior over large lack-of-fusion pores (density-dominated regime).

3. Ductility can be largely predicted by porosity
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