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I AM parts exhibit frequent disqualifying flaws in addition to significant variability.
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3 
Damage tolerant approach

1. Assume all AM components have flaws

2. Which flaws matter?

3. Identify flaw types
• Cracks
• Voids

• Bulk porosity

• Microstructure-based flaws

4. Print intentional flaws of varying sizes and types

5. Predict critical flaw sizes in different regions for each flaw type

6. Non destructively inspect each component for critical flaws
• Critical law size is now defined for each region of the part.
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I 316 Stainless Steel vs. AlSi10Mg

316 Stainless Steel
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5 
I 316 Stainless Steel vs. AlSi10Mg

316 Stainless Steel

• K = 100 MPaVm?

• Charpy impact toughness >120 ft-lbs

• Ductility = 60%
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AlSi10Mg

• K = 20 MPaVni

• Charpy impact toughness >8 ft-lbs

• Ductility = 10%
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6 
What about multiple voids?

Different build conditions can create different levels of porosity.
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High throughput tensile testing, "30 samples per hour, gives statistical distributions
7

of structural properties.

1. Self-aligning
`drop-ini grips

2. Non-contact virtual
extensometer with "live"
digital image correlation

3. Maximize software
automation to reduce
operator burden
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8 
Powder reuse of AISi1.0Mg gives different levels of porosity and tensile
properties for each build plate.
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9
Lower strength specimens have substantially more small voids (20-50 p.m).

• Simply searching for voids above some diameter threshold is
insufficient.

• Millions of small voids reduce ductility and strength more than a
few large voids.

• Many small voids allow for straight fracture path.

• We are in a density dominated regime.

Surface Crust around edge of sample. Loosely-bound powder,
surface roughness, and cracks.
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High throughput fracture surface imaging
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• imaged all 172 large HTT fracture

surfaces in the SEM

• Variable pressure secondary imaging
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High throughput fracture surface imaging
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12 
I Void identification algorithm to measure porosity on fracture surfaces

Contrast Adjustment & Binary

Threshold
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• Identify voids on a fracture surface from high throughput SEM images.

• Multistep process does more than simple thresholding.

• Algorithm allowed -172 fracture surfaces to be analyzed—about 10x more
than was possible before.

re;

L:J

Sandia -
National
Laboratories

Identified pores for Build 5 Location 1-1



13 
Compare ductility to fracture surface porosity
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• Increasing fracture surface porosity by 1% decreases ductility by 0.5%.

• Fracture porosity is NOT equivalent to density.

• Relationship between fracture surface porosity and density?
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I Crust and porosity effects on unloading modulus
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• Crust has dominant effect, but porosity is also meaningful.

• Subtracting crust and porosity gives an unloading modulus near
74 GPa (ultrasound value).

• Going forward, we can correct modulus based on unloading
modulus.
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Crust and porosity effects on ultimate tensile strength
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• Inherent Yield stress is 160

MPa instead of 120 MPa.

• Inherent Tensile strength is 280

MPa instead of 200 MPa.
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Conclusions Sandia -
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1. Introducing intentional flaws to identify critical flaw size for exemplar component.

2. Small ubiquitous pores can dominate tensile behavior over large lack-of-fusion pores (density-dominated regime).

1. Ductility can be largely predicted by porosity
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