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Previous Studies on Heterogeneous & Homogeneous

Nucleation in Liquid Water
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Transmission Loss of Water during Homogeneous &

Heterogeneous Nucleation

2.5 GPa < Heterogeneous 6.5-7GPa=
Nucleation Homogeneous Nucleation
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Transmission Loss of Water during Homogeneous &

Heterogeneous Nucleation

2.5 GPa < Heterogeneous 6.5-7GPa=
Nucleation Homogeneous Nucleation
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Sandia’s THOR-64
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PDV & VISAR Profiles for 6 Shots on THOR
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Peak Phase Transition for Each Shot

Shown on its Respective Isentrope
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Peak Phase Transition for Each Shot

Shown on its Respective Isentrope
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Calculating the Freezing Duration & Nucleation Rate

Deconvolute Thickness of each Sample from the
Observed Freezing Duration:

T Wg

t
Variables: k W
t, —freezing duration

Ty — observed freezing duration _
W — thickness of the fastest sample Time-Independent form of the Kolmogorov-

W, — thickness of the sample Johnson-Mehl- Avrami (KIMA) equation:

k — shot number _ _
J — nucleation rate k k 14
y — growth rate
If we assume ¥ is a constant,

4
Jk L
T 44
Ji
Philip C. Myint and Jonathan L. Belof, Journal of Physics: Condensed Matter 30 (23), 233002 (2018). 9

E. J. Nissen and D. H. Dolan, The Journal of Applied Physics. Accepted.



Initial Sample Temperature & Compression Rate Effect on
Dynamic Freezing in Water

Shot Temperature Thickness Ramp  Transition Freezing Nucleation

(°C) (um)  (GPa/ns) Pressure Duration Rate Ratio
(GPa) (ns) (Ja/Jshot #)
4 44 12 0.233 9.2 i 1
1 25 63 0.163 7.2 2.7 2.5
5 44 69 0.141 9.1 .t 2.3
2 25 56 0.052 el 7.4 130
3 25 53 0.054 6.9 8.2 193
6 44 63 0.050 8.6 7.4 0

13
Freezing Nucleation
Ramp Rate Duration Rate
Initial Transition
Temperature Pressure

10



Slide 10

NEJ1 Transition times decrease more slowly than (rate)-1, but more experiments at different ramp rates are needed to better

constrain the trend.
Nissen, Erin J, 6/3/2019
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Shock initiation of reactive nanolaminates
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Raw PDV & VISAR Measurements
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P = pocuy
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Undercooling vs. Latent Heating by Solidification

ATy > AT,
AH = 6.36 ki/mol
AH
ATQ == C_P
Cp=~C Cmax * 3 fTD/T x*(e®)dx
P =~ “vvII — (TD)3 0 (ex . 1)2
T
Sarah T. Stewart and Thomas J. Ahrens, Journal of Geophysical Research: Planets 110 (E3) (2005). 15

P. W. Bridgman, The Journal of Chemical Physics 5 (12), 964 (1937).
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Table with Error Bars

Thickness
(um)

72
63
69
56
53
63

0.233
0.163
0.141
0.052
0.054
0.05

Transition
Pressure
(GPa)

9.24 £ 0.06
7.25+0.06
9.06 +0.40
7.05+0.18
6.93 £0.16
8.60 + 0.04

Observed
Duration

(ns)

2.2%0.6
2.7+0.5
26+0.6
6.6 0.6
6.9+0.2
6.5+0.5

Freezing
Duration

(ns)

2.2
2.7
2.7
7.4
8.2
7.4

2.3
2.3
130
193
130

Nucleation
Rate Ratio

(]4/]shot #)

[
N



