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Autoignition and Flame Stabilization in Engines
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Exascale Simulation of Turbulent Combustion

* Fundamental insights into multi-
physics in highly turbulent flames to
formulate physics-based LES models

* High Reynolds number, high pressure,
large turbulent velocity fluctuations,
compressibility

— LES SGS closures inherited from
nonreacting flows

— Multi-scale energy transfer processes

— Complex thermo-chemical trajectories
through flames and ignition fronts

 High-fidelity direct numerical simulation
(DNS) and hybrid DNS/LES
methodologies i
— sufficient chemical fidelity to differentiate 1}- >

effects of fuels where there is strong
turbulence-chemistry interactions

— complex flows

3 Exascale Computing Project

EXASCALE
COMPUTING
PROJECT




Direct Numerical Simulation — S3D

* DNS of turbulent reacting flows

» Solves compressible reacting
Navier-Stokes, total energy and
species continuity equations

* High-order finite-difference
methods

 Detailed reaction kinetics and
molecular transport models

- Lagrangian particle tracking
(tracers, spray, soot)

- In situ analytics and visualization DNS provides unique fundamental
insight into the chemistry-
« Refactored for multi-threaded, turbulence interaction

many core heterogeneous
architectures

Chen et al., Comp. Sci. Disc., 2009



Computational intensity of DNS scales with Moore’s Law
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Constraints imposed by exascale architecture

Power: primary design constraint e 5

for future HPC system design ] o=

Memory
Cost: Data movement dominates:
optimize to minimize data
movement

Concurrency: Exponential growth of
parallelism within chips

Locality: must reason about data —
locality and possibly topology '

Memory Scaling: Compute growing
2x faster than capacity or g : ;
bandwidth, e — ] Node :

Heterogeneity:Architectural and Conceptual model of future HPC node
performance nonuniformity
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Accelerator

On-Package

Express data locality and independence, express massive parallelism,
minimize data movement and reduce synchronization, detect and address faults



DOE Exascale Computing Project (ECP) will
achieve capable exascale machines in 2021-2023

Software Hardware =xascale
_ Technology | Technology | S

Science and Scalable and Hardware Integrated

mission productive technology exascale

applications software stack elements supercomputers

ECP’s work encompasses applications, system software, hardware
technologies and architectures, and workforce development

From Paul Messina’s ASCAC talk April 19, 2017



ECP application: transforming combustion science and
technology through exascale simulation (Pele)

S3D: multi-block compressible reacting
DNS multi-physics validation: spray,

)
A
(rereer il

soot, radiation
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Effects of reactivity
stratification at:

PeleC and PeleLM: Block-structured
adaptive mesh refinement, multi-physics:
spray, soot, and radiation, real gas,
complex geometry
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high turbulence
fuel blends

ignition delay
combustion
rates
emissions

Automated Mechanism Generation

Rate Rules
| Mechanism Generator (RMG) ﬁ—' Specific spEtasll

1st Iteration
No Yes

Theoretical Rate
Constants (EStokTP)

Uncertal nty

| Method

Reaction(s) |
A

Chem. Sim.
Acceptable

OAK
'RIDGE

National Laboratory Laboratory

Mechanism Reduction
DRGASA

s, TINREL



Outline

« Examples of DNS of turbulent combustion relevant to engines:

» DNS of turbulent autoigniting nDodecane diesel jets (S3D and
PeleLM)

» DNS of high-speed flame stabilization behind a step
» DNS of reheat combustion in staged gas turbines
« Path to Exascale Combustion Simulations (2021-2023)
» Programming models
» Composable in situ workflows (analytics, machine learning)

» Unsupervised anomaly detection



DNS of a Turbulent Autoigniting n-Dodecane
temporal jet at 25 Bar

Giulio Borghesil, Alex Krisman?, Tianfeng Lu? and Jackie Chen?
1Combustion Research Facility, Sandia National Laboratories
2University of Connecticut

Ketohydroperoxide mass fraction

Borghesi et al. Combustion and Flame, 2018



Background and Objective

* Low-temperature combustion
(LTC) aims at increasing fuel
efficiency and reducing emissions

— t=0.10 ms
2250 —-— t=0.14 ms
== 1=0.17 ms
—  t=0.22 ms

t=0.30 ms |
—O— t=0.42 ms
—/— t=0.55 ms
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 Under LTC conditions, combustion
occurs in a mixed mode and in
multiple ignition stages

Temperature [K]
E
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1050
* Ignition is now very sensitive to ]

the fuel chemistry, especially to 650 - '

, 0 0.06 0.12 018 0.24 0.30
the low temperature reactions Mixture fraction & [-]
branch

Question: How does transport and low-temperature chemistry affect
ignition in low-temperature diesel combustion?



Background on high-temperature ignition

« Homogeneous PSR calculations
show the existence of x value, X,
where ignition delay has a
minimum;

* Flamelet simulations show the
ignition delay increases with scalar
dissipation N until a critical value is

reached;

* In practical systems, ignition occurs
at locations close to x,, where N is
low. The ignition delay is longer
than in PSR;

* Question: which features of high-T
ignition carry over to low-T ignition?

[1] E. Mastorakos, PECS (2009), pp. 57-97
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Low Temperature Diesel Combustion
Experiments — Engine Combustion Network
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DNS Configuration and Physical Parameters

§ly) Uly)
Pressure: 25 bar o

Air stream: 15% X,,+85% Xy,, T=960 K

Non-reflecting outflow y,

0009000  ““P00000
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Fuel stream: n-dodecane at §=0.3, T=450 K

--Ugr Hgr||oo000cFUEL 002 000

—

Kinetics: 35-species non-stiff reduced (Lu)
Fuel jet velocity: 21 m/s, Re; = 7000, Re, ~ 950
Code and cost: S3D Legion, 60M CPUh

Setup:
— 3 billion grids
— 3 microns spatial grid resolution
— Dimensions: 3.6 mm x 14.0 mm x 3.0 mm

— 1 ms of physical time with 4 ns timesteps
to observe ignition and propagation of
burning flames throughout the domain

— BCs: X and Z periodic, Y NSCBC outflows
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Non-reflecting outflow y.

L= 12xH,;

Figure: H,O, mass fraction at
t=0.17 ms after start of
reactions
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Conditional statistics reveal ignition dynamics
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Turbulent versus homogeneous ignition
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Low-T and high-T ignition in jet can be faster and than in a PSR !



Propagation mechanism for low-T reaction front
1 T 1.00

— reaction
— diffusion

Flames +
spontaneous
ignition
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Sketch of reaction / diffusion balance along
normal for KET for flame and ignition kernel

Low-T fronts propagate through diffusively supported flame
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Conclusions

Low-temperature reactions create the conditions for high-temperature
ignition to occur faster than under homogeneous conditions;

Low-temperature front appears to propagate through a diffusively
supported cool flame;

High scalar dissipation appears to delay low-temperature ignition;
however, it leads to faster ignition at very rich mixture conditions;

High-T ignition starts at conditions richer-than-homogeneous conditions
(€=0.16 compared to £=0.12). Edge flames are seen to form around &.
High-T flame ignites mainly by propagation of rich premixed flames
following hot ignition to &.



DNS of multi-injection mixing and
combustion at compression
ignition engine conditions

M. Rietha, M. Day®, C.-B. Kweon¢, Jacob Temme¢
J.B. Bellb, J.H. Chen2

aSandia National Laboratories
b awrence Berkeley National Laboratory
°U.S. Army Research Laboratory
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Objectives & Setup

Spark plug ()
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lgnition delay of 2" injection decreased by roughly factor 23

* Purely gaseous n-dodecane/air jet @ T=470K, Z=0.45

* Ambient conditions: 900K, 15% O,, 85% N,, 60atm

* Conditions adapted from Dalakoti et al.?
—> downscaled ECN Spray A, keeping Da constant (Re=19,000, Da, =0.02)

* Multi-injection: 0.5 ms pilot, 0.5 ms dwell, 0.5 ms main

* Main injection sees very different conditions compared to pilot injection

* How do mixing and different thermo-chemical conditions affect ignition in the
main injection?

22

1Dalakoti et al., ICDERS, 2017. 2www.crf.sandia.gov. 3Skeen et al., JSTOR, 2015.



PeleLM Code & Numerical Setup
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EXASCALE COMPUTING PROJECT

* PeleLM - low-Mach adaptive mesh refinement code based on AMReX

» Spectral deferred correction scheme for fluid dynamics-chemistry coupling
» Code is open-source at https://amrex-combustion.github.io/

» Resolution ~1.25 micron required for rich premixed cool flames,

currently 5 micron for full multi-injection run

 Size of simulation: 0.5B cells (O(100)B cells full run without AMR)

» 35 species reduced n-dodecane mechanism
(Yao et al., 2017; Borghesi et al., 2018)

, Pilot
Mgln , Injection
InJecthn » LA =

1
| | 1 N L
|

L™

-

Emmett et al., arxiv, 2018.

E. Motheau AMReX gallery.
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Mixture traction 2 |-|

Zero-dimensional n-dodecane ignition
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* N-dodecane exhibits two-stage ignition with minimum ignition delay
at ‘preferred mixture fraction’ for each stage’

* H,0, is a marker

for low temperature combustion

24

* OH is a marker for high temperature combustion

1Mastorakos, PECS, 20009.
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Mixture fraction

Zero-dimensional n-dodecane ignition with
products

Oxidizer now consists of an equilibrated lean mixture with Z=0.01
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« Low temperature ignition shifts toward richer mixtures (by almost a
factor of 3, has a much shorter ignition delay while hot ignition
remains the same)



Multi-injection ignition sequence
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*Movie does not show full domain temperature
t = 0.000 ms species
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Temperature
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Effect of mixing on ignition
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Effect of mixing on ignition

18t injection

Correlation
between progress
variable and pilot variable and
scalar dissipation cross scalar

rate dissipation rate

2nd injection
Correlation
between progress

p Yp ;X pilot

031 '\ =l —— 0.55m, —_— 2567,
’ —— 0917y, _0.8] == 2937,
0.4 \/ Tinj 0.8 Tinj
0.0 0.2 0.4 0.0 0.2 0.4
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18t injection consistent to work by Borghesi et al., C&F, 2018.

Only negative
values of cross
scalar dissipation
rate taken into
account

Zmain
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Conclusions

 First- and second stage pilot ignition consistent with previous numerical
studies

« Accelerated ignition for main injection observed consistent with
experiments

 Pilot/main mixture fraction scalar dissipation rates show similar log-
normal-like pdfs

» Cross SDR pdf has sharp peak and stretched exponential tails, skewed
toward negative values

e Strong mixing inhibits ignition of first injection, promotes ignition of second
injection



DNS of a turbulent premixed flame stabilized
over a backward facing step

Konduri Aditya, Hemanth Kolla and Jacqueline H. Chen
Sandia National Laboratories
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Overview

Experiments
g PIV, PLIF
- (UVa, GWU,
. / e | NASA)

I Inflow conditions from g

a experiments (PIV, CARS), Fuel-aﬁ
,and from RANS, LES entrainment .
_____________________ Minflow _ @ e
w

™ DNS computational domain

LES (NCSU)

Gain insights into:
* Flame stabilization mechanism
e [Effect of heat release

* Turbulence and chemistry interactions



S3D - Multiblock

Multiblock construction
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Ethylene-air
®=0.42

U =200 m/s
u =10%
T=1125K

* Mechanism: 22 species non-stiff reduced ethylene-air (Lu et al. 2012)
* Transport model: mixture averaged

Inflow

Backward-facing step

Isothermal wall Twai = 600 K

Block 1 Block 2

Block 3

4

e — -

\ 4

Isothermal wall

H 1.47 cm

D 0.3048 cm
Outflow | Rey 35000

Ret 788

Grid count 2.6 billion

CPU hrs 25 million

* Turbulent inflow profile: feed data generated from a separate 3D DNS of channel

==lp Periodic channel

Inflow profile
sampling




Flame stabilization

Vorticity magnitude Heat release rate

* Flame stabilizes near the corner of the step
 Extends downstream in the shear layer
* Flame inhibits rapid expansion of the channel flow



Flame - tangential strain rate

Tangential strain rate

4 | | | |
10 20 30 40

x-location

e Strain rate relaxes downstream
e Affects flame structure
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Flame stabilization

Reaction rate OH
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Vorticity dynamics

Enstrophy

5.0e+10
—-3.8e+10

—2.9e-1+10

l 1.2e+10
0.0

* Closer to the step: near-wall structures present on the reactant side
 Downstream: significant vorticity present on the product side



Vorticity dynamics
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Terms

Enstrophy balance shows advection, vortex
stretching and viscous dissipation are dominant

0 (a)2>+ 0 ((02> - u; w28u,-+a),-8 ap 8P+w18 2, 1 dty
| 5 ) Tl | 7 | =005 — ik A TO&jky | — 3
dt \ 2 dx; \ 2 ax]' 8xj p2 a)Cj dxy ax]' p dx;
Advection Vortex Dilatation = Baroclinic Dissipation
stretching torque
x10'° %10 x10"
T ; i 1.5 | | T T
) — Advection |
— Vortex stretching
— Dilatation

— Baroclinic torque -
— Viscous dissipation

Terms
1
Terms

0 02 04 06 08 1 "0 02 04 06 08 1 0O 02 04 06 08 I
Progress variable Progress variable Progress variable



Wall heat flux (x10" 3)

Increased wall heat flux downstream
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Flame structure

Grey scale: enstrophy c=0.2 0.8 0.9
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Affects preheat zone Affects oxidation layer

Flame-flame interaction
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Flame structure

Reaction rate C2H 1
Reaction rate CO

-03 ! ! ! | 201 L 1 I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Progress variable Progress variable

* Due to the high strain rate near the step, fuel is consumed at high progress
variable as the flame is pushed into the products (Libby & Williams)
* CO and H2 consumption quenched near the step



Flame structure

-2000.0

-1650.0

Temperature (K)

1300.0

950.00

Heat release rate

600.00

0 0.2 0.4 0.6 0.8 1
Progress variable

* Heat release rate increases downstream and occurs at intermediate progress
variable

 Temperature decreases downstream, due to enhanced mixing in the
products
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Conclusions

DNS of C2H4/air flame stabilization behind a backwards facing step

Strong interaction between recirculation zone, shear layer, and
flame brush

Radicals from the recirculation zone assist in anchoring the flame

Turbulence generated near-wall migrates towards products
downstream of the stabilization point

Turbulence affects the flame structure and heat losses to the wall



Direct Numerical Simulation of flame stabilization
assisted by auto-ignition at reheat conditions

Konduri Aditya?, Andrea Gruber®, Mirko Bothien¢and Jacqueline H. Chen?

aCombustion Research Facility, Sandia National Laboratories, Livermore, CA, USA
bSINTEF Energy Research, Trondheim, Norway
‘Ansaldo Energia, Baden, Switzerland
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Staged gas turbine combustion

Premix
combustor —

Dilution air =
mixer

Sequential
combustor

Transition
piece

Originally developed by ABB for high efficiency, load flexibility
and low emissions

Recently improved and simplified (reduced cost) for the H-class
GT36

First (premix) combustion stage based on flame propagation
Second (sequential) combustion stage based on auto-ignition



Reheat burner

DNS of idealized reheat burner configuration from Ansaldo Energia
Operating conditions:
e |Inlet temperature: ~ 1100 K

I t I th Lign
e Pressure: ~ 20 atm bl il

2 »
Turbulent R 000
e Ly U | __| , NSCBC
Scaled conditions: '\:ffi)%vc —> o 1 . M?’ ______ — Outflow
e Mean inlet temperature: k 4 —1>
e Pressure: 1 atm Isothermal walls e

e Fuel: hydrogen

Objective:

e Understand the flame stabilization
e |dentify the modes of combustion
e Quantify the role of autoignition



Simulation details

Isothermal wall

N
.2 ] 1.25 billion grid points
furoulent L 4 : . NSOBC 20 million CPU hours
ow ] Hiow Re, = 13000
4

e Chemical mechanism: 9 species hydrogen-air (Li et al., 2004)
¢ Inflow composition: premixed H2 + 02 + N2 + H20 (¢ = 0.35)

e Ubulk =200m/s, u’ =20m/s, T = 1100K, T, = 750K
¢ Inflow profile: feed from DNS of a fully developed channel flow,

Re, ~13, 000, Re= 378 (viscous length scale)

— ——_

s -
-

Feed data
sampling plane




Enstrophy conditioned on temperature, and heat release rate (red)

Iso-surfaces of
vorticity magnitu
colored by
temperature

T(K): 800 1000 1200 1400 1600

Two combustion configurations are observed:

e Design state: mainly auto-ignition in the combustion chamber

e Intermittent auto-ignition state: ignition in mixing section



Design combustion state

Heat release rate
2

Combustion modes:
e Autoignition along center-
line

coooo-
N0

e Flame propagation near
corners

e HO2: indicative of chain
branching




Combustion mode: OH budget analysis

0(pY :
(pc?tOH) = —Vpg - (pYonup) — Vg - (pYonVgs,on) + Wonwor

Advection Reaction

e Auto-ignition: balance between

1
advection and reaction 08
. 0.4

e Flame propagation: balance between 0.2

. S 0
and reaction % 2 4 6
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Intermittent auto-ignition state

Heat release rate
2

* Early auto-ignition in the
mixing section

coocoo-
N O

* Ignition kernel advects
downstream

Occurs intermittently

coooo-
NSO O
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NSO ™
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Chemical Explosive Mode Analysis

e a=¢, /P, : ratio of the projected non-chemical source term and
the projected chemical source term (C. Xu et al., PROCI 2018 )

Three mode are identified:

e Assisted-ignition (a > 1): diffusion significantly promotes reaction
. chemistry plays a dominant role

e Extinction zone (a < -1): diffusion dominates chemistry and
suppresses ignition

o 580
+1 gE60-
o E
-1 5340—
5820
* o L | —




Intermittent auto-ignition state

—1.0e+10

—7.5e+09

5.0e+09 Auto-ignition Contours of
- / heat release
2.5e+09

1.0

Compression wave

V-u(l/s) « ocalrise in pressure due

Vi

1.5 7500 to intermittent
4500 constructive interference
1 _1 288 pattern
-4500
0.50 7500 * Increases local

temperature by 20-30 K
, . , * High reactivity of hydrogen
Contours of instantaneous dilatation
* Decrease in ignition delay
time (30%)



Conclusions

* Performed DNS of a reheat burner at scaled conditions

* Two states of hydrogen/air combustion have been observed:
e design state: flame propagation and auto-ignition in the combustor
* intermittent auto-ignition in mixing section

* Premature auto-ignition arises due to pressure (and following
temperature) rise in mixing section

 Quantified the contribution of different modes towards heat release
using chemically explosive mode analysis (CEMA)

e Future work:

e characterize the unstable flame behavior and the conditions
leading to it

 find the inlet conditions for statistically stationary reheat flame

* perform 2D and 3D simulations with varying fuel composition and
its stratification



Parallel Programming 101 -

Functionally correct
application code
|

Extraction of para

Task scheduling
Latency hiding
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Parallel Programming 101

Functionally correct Mapping to target
application code machine

‘ Compiler/Runtime |
Extraction of parallelism ,_J understanding of __E

data

Management of
data transfers

Task scheduling [\ Data-Dependent

Latency hiding Behavior
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Legion Programming System applied to S3D

» A data-centric parallel programming system

» A programming model for heterogeneous, distributed machines
— Automates many aspects of achieving high performance, such as extracting task- and

data-level parallelism

— Automates details of scheduling tasks and data movement (performance optimization)
— Separates the specification of tasks and data from the mapping onto a machine

(performance portability)

» Legion application example: S3D

— Direct numerical simulation using explicit

Production combustion simulation
Written in ~200K lines of Fortran

methods

Throughput Per Node (Points/s)

60000

2
8

ISJ
S

S
3

(=]

S. Treichler et al., “S3D-Legion: An Exascale Software for Direct Numerical
Simulation (DNS) of Turbulent Combustion with Complex Multicomponent

Chemistry,” CRC Book on Exascale Scientific Applications: Programming

Approaches for Scalability Performance and Portability, 2017.

oU Exascale Computing Project, www.exascaleproject.org
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In-situ Data Analytics in Legion
Chemical Explosive Mode Analytics (CEMA)

« CEMA: eigenvalue solve on the reaction rate Jacobian to determine the mode of
combustion

-------
mE na!

« Run CEMA at each time step as a diagnostic to steer mesh refinement
« CEMA computation takes longer than a single explicit RK stage (6 stages/timestep)

» Dividing CEMA across RK stages and interleaving with other computation so as not
to impact other critical operations would be hard to schedule manually

» Asynchronous task execution, schedule CEMA on CPU resources
* Interoperate Fortran CEMA with Legion code — took a day to implement

~—

= \
\ EXASCALE
} COMPUTING
\ PROJECT
(g

61 Exascale Computing Project, www.exascaleproject.org




Execution Overhead of In-situ Analytics
(CEMA) in S3D-Legion (Titan & Piz Daint)

10

= Without CEMA
3 Wwith CEMA 8.42

7.30

)

&

» 6f

E

8 4 08, 84%

£ ° reduction

= reduction pos 244
2l 1.79 1.80

MPI Fortran Legion MPI Fortran Legion

Piz Daint Piz Daint Titan Titan
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Legion S3D Lessons Learned

* Legion
— 83D shows potential of data-centric, task-based models
— Enables new simulation capabilities (physics, and in situ analytics)

— Code is easier to modify and maintain
* Ports are just new mappings, easy to tune for performance
* New functionality usually just means new tasks
* Legion will figure out the dependences and scheduling
* Productivity requires higher level abstraction layer for scientists to write in

« Co-Design and ECP

— The Legion/S3D experience is a tribute to co-design
— Computer and computational scientists worked closely
— Major progress on important problems resulted

Fomy \
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Exascale Targets: Science at Relevant Conditions

* Hybrid DNS/LES (near DNS) with dynamic
adaptive mesh refinement, multi-physics
(sprays, soot, radiation at high pressure) in
geometry

» Reactivity Stratified Compression Ignition IC
Engines - multi-stage, high pressure autoignition of
a liquid hydrocarbon fuel blend

« Natural Gas IC Engines — ignition and knock

« Scramjets — cavity stabilized shear driven lean
turbulent premixed flames, effect of products
recirculation coupled with high Re, high Ka,
compressible flames

« Gas Turbines — swirl stabilized spray combustion
gas turbines with lean premixed combustion, flameg
stabilization, nitric oxide emissions, thermo-
acoustics

* Include in-situ analytics & visualization
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