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Autoignition and Flame Stabilization in Engines
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Exascale Simulation of Turbulent Combustion

• Fundamental insights into multi-
physics in highly turbulent flames to
formulate physics-based LES models

• High Reynolds number, high pressure,
large turbulent velocity fluctuations,
compressibility
— LES SGS closures inherited from
nonreacting flows

— Multi-scale energy transfer processes

— Complex thermo-chemical trajectories
through flames and ignition fronts

• High-fidelity direct numerical simulation
(DNS) and hybrid DNS/LES
methodologies
— sufficient chemical fidelity to differentiate

effects of fuels where there is strong
turbulence-chemistry interactions

— complex flows
3 Exascale Computing Project
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Direct Numerical Simulation S3D

• DNS of turbulent reacting flows

• Solves compressible reacting
Navier-Stokes, total energy and
species continuity equations

• High-order finite-difference
methods

• Detailed reaction kinetics and
molecular transport models

• Lagrangian particle tracking
(tracers, spray, soot)

• In situ analytics and visualization

• Refactored for multi-threaded,
many core heterogeneous
architectures

DNS provides unique fundamental
insight into the chemistry-
turbulence interaction

Chen et al., Comp. Sci. Disc., 2009



Computational intensity of DNS scales with Moore's Law
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Constraints imposed by exascale architecture

• Power: primary design constraint
for future HPC system design

• Cost: Data movement dominates:
optimize to minimize data

3movement L.(151

• Concurrency: Exponential growth of Fc-i
parallelism within chips

• Locality: must reason about data
locality and possibly topology

• Memory Scaling: Compute growing
2x faster than capacity or
bandwidth,

• Heterogeneity:Architectural and
performance nonuniformity

NUMA Domain

Network-on-Chip

NUMA Domain

Accelerator

-Package
emory

Node

Conceptual model of future HPC node

Express data locality and independence, express massive parallelism,
minimize data movement and reduce synchronization, detect and address faults



DOE Exascale Computing Project (ECP) will
achieve capable exascale machines in 2021-2023
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ECP application: transforming combustion science and
technology through exascale simulation (Pele)

PeleC and PeIeLM: Block-structured
adaptive mesh refinement, multi-physics:
spray, soot, and radiation, real gas,

complex geometry

Effects of reactivity
stratification at:

• high pressure
• high turbulence
• fuel blends

on:

S3D: multi-block compressible reacting
DNS multi-physics validation: spray,
soot, radiation

Argonne
NATIONAL LABORATORY

BERKELEY LAB
Lawrence Beiteley National Laboratory

• ignition delay
• combustion

rates
• emissions
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Outline

• Examples of DNS of turbulent combustion relevant to engines:

➢ DNS of turbulent autoigniting nDodecane diesel jets (S3D and
PeIeLM)

➢ DNS of high-speed flame stabilization behind a step

➢ DNS of reheat combustion in staged gas turbines

• Path to Exascale Combustion Simulations (2021-2023)

➢ Programming models

➢ Composable in situ workflows (analytics, machine learning)

➢ Unsupervised anomaly detection



DNS of a Turbulent Autoigniting n-Dodecane

temporal jet at 25 Bar

Giulio Borghesil, Alex Krismanl, Tianfeng Lu2 and Jackie Chen1

1Combustion Research Facility, Sandia National Laboratories

2University of Connecticut

Ketohydroperoxide mass fraction

Borghesi et al. Combustion and Flame, 2018



Background and Objective

• Low-temperature combustion
(LTC) aims at increasing fuel 2250

efficiency and reducing emissions
—1850

• Under LTC conditions, combustion
co

occurs in a mixed mode and in ',7) 1450

multiple ignition stages (I)
- 1050

• Ignition is now very sensitive to
the fuel chemistry, especially to
the low temperature reactions
branch

650

— t =0.10 ms

t =0.14 ms

t =0.17 ms

t =0.22 ms

t =0.30 ms

—0— t =0.42 ms

—V— t =0.55 ms

0.06 0.12 0.18 0.24 0.30
Mixture fraction [-]

Question: How does transport and low-temperature chemistry affect
ignition in low-temperature diesel combustion?



Background on high-temperature ignition

• Homogeneous PSR calculations
show the existence of x value, xm,
where ignition delay has a
minimum;

• Flamelet simulations show the
ignition delay increases with scalar
dissipation N until a critical value is
reached;

• In practical systems, ignition occurs
at locations close to xm where N is
low. The ignition delay is longer
than in PSR;

• Question: which features of high-T
ignition carry over to low-T ignition?

[1] E. Mastorakos, PECS (2009), pp. 57-97
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Low Temperature Diesel Combustion
Experiments - Engine Combustion Network
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DNS Configuration and Physical Parameters
• Pressure: 25 bar

• Air stream: 15% X02+85% XN2, T=960 K

• Fuel stream: n-dodecane at •=0.3, T=450 K

• Kinetics: 35-species non-stiff reduced (Lu)

• Fuel jet velocity: 21 m/s, Rei = 7000, Ret — 950

• Code and cost: S3D Legion, 60M CPUh

• Setup:

— 3 billion grids

— 3 microns spatial grid resolution

— Dimensions: 3.6 mm x 14.0 mm x 3.0 mm

— 1 ms of physical time with 4 ns timesteps

to observe ignition and propagation of

burning flames throughout the domain

— BCs: X and Z periodic, Y NSCBC outflows
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Homogeneous Multi-Stage Autoignition
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Conditional statistics reveal ignition dynamics
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Turbulent versus homogeneous ignition
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Propagation mechanism for low-T reaction front
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Conclusions

• Low-temperature reactions create the conditions for high-temperature
ignition to occur faster than under homogeneous conditions;

• Low-temperature front appears to propagate through a diffusively
supported cool flame;

• High scalar dissipation appears to delay low-temperature ignition;
however, it leads to faster ignition at very rich mixture conditions;

• High-T ignition starts at conditions richer-than-homogeneous conditions
(4=0.16 compared to 4=0.12). Edge flames are seen to form around 4st.
High-T flame ignites mainly by propagation of rich premixed flames
following hot ignition to 4st.



DNS of multi-injection mixing and
combustion at compression
ignition engine conditions

M. Rietha, M. Dayb, C.-B. Kweonc, Jacob Temmec

J.B. Bellb, J.H. Chena

aSandia National Laboratories
bLawrence Berkeley National Laboratory

CU.S. Army Research Laboratory
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Objectives & Setup

Fan
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Pressure
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Sandia Spray A experiment
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;
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2nd head

QJ

•

ist

inj.
Dwell

2nd

inj.

time

Ignition delay of 2nd injection decreased by roughly factor 23

• Purely gaseous n-dodecane/air jet @ T=470K, Z=0.45

• Ambient conditions: 900K, 15% 02, 85% N2, 60atm

• Conditions adapted from Dalakoti et al.1

downscaled ECN Spray A, keeping Da constant (Rez:19,000, Daiet =0.02)

• Multi-injection: 0.5 ms pilot, 0.5 ms dwell, 0.5 ms main

• Main injection sees very different conditions compared to pilot injection
• How do mixing and different thermo-chemical conditions affect ignition in the

main injection?

1Dalakoti et al., ICDERS, 2017. 2www.crf.sandia.gov. 3Skeen et al., JSTOR, 2015.
22



PeIeLM Code & Numerical Setup E

• PeIeLM — low-Mach adaptive mesh refinement code based on AMReX

• Spectral deferred correction scheme for fluid dynamics-chemistry coupling

• Code is open-source at https://amrex-combustion.github.io/

• Resolution -1.25 micron required for rich premixed cool flames,
currently 5 micron for full multi-injection run

• Size of simulation: 0.5B cells (O(100)B cells full run without AMR)

• 35 species reduced n-dodecane mechanism
(Yao et al., 2017; Borghesi et al., 2018)
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Zero-dimensional n-dodecane ignition
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1Mastorakos, PECS, 2009.



Zero-dimensional n-dodecane ignition with
products
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Multi-injection ignition sequence
*Movie does not show full domain
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Effect of mixing on ignition
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Effect of mixing on ignition
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Conclusions

• First- and second stage pilot ignition consistent with previous numerical
studies

• Accelerated ignition for main injection observed consistent with
experiments

• Pilot/main mixture fraction scalar dissipation rates show similar log-
normal-like pdfs

• Cross SDR pdf has sharp peak and stretched exponential tails, skewed
toward negative values

• Strong mixing inhibits ignition of first injection, promotes ignition of second
injection
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Overview

Cavity model

mounting

strut

Zirconia coated, water cooled cavity body

Radical

entrainmeht

-

Inflow conditions from

experiments (PIV, CARS), Fuel-air
and from RANS, LES entrainmek

Main flow

Cavity flow.

LES (NCSU)

Lifted shear layer

DN5 computational domain

Gain insights into:
• Flame stabilization mechanism
• Effect of heat release

• Turbulence and chemistry interactions

Experiments

PLIF

(UVa, GWU,

NASA)



S3D - Multiblock

Multiblock construction

T (K)
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With IBM (Rauch et a 2018)
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Ethylene-air

0 = 0.42

U = 200 m/s 
lnflow

u' = 10%

T = 1125 K

Backward-facing step

isothermal wall Twall = 600 K

Block 1 Block 2

Block 3 D

lsothermal wall

Outflow

H 1.47 cm

D 0.3048 cm

ReH 35000

ReT 788

Grid count 2.6 billion

CPU hrs 25 million

• Mechanism: 22 species non-stiff reduced ethylene-air (Lu et al. 2012)
• Transport model: mixture averaged
• Turbulent inflow profile: feed data generated from a separate 3D DNS of channel

IP
Periodic channel.........

Inflow profile

sampling



Flame stabilization

Vorticity magnitude Heat release rate

• Flame stabilizes near the corner of the step
• Extends downstream in the shear layer
• Flame inhibits rapid expansion of the channel flow



Flame - tangential strain rate
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• Strain rate relaxes downstream
• Affects flame structure
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• 
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Vorticity dynamics

Enstrophy

• Closer to the step: near-wall structures present on the reactant side
• Downstream: significant vorticity present on the product side



Vorticity dynamics
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Enstrophy balance shows advection, vortex
stretching and viscous dissipation are dominant

d (0)2 d (0)2 dui
dt
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Advection
- Vortex stretching
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- Viscous dissipation
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Increased wall heat flux downstream
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Flame structure

Grey scale: enstrophy

Affects preheat zone

Flame-flame interaction
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• Due to the high strain rate near the step, fuel is consumed at high progress
variable as the flame is pushed into the products (Libby & Williams)

• CO and H2 consumption quenched near the step
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• Heat release rate increases downstream and occurs at intermediate progress
variable

• Temperature decreases downstream, due to enhanced mixing in the

products
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Conclusions

• DNS of C2H4/air flame stabilization behind a backwards facing step

• Strong interaction between recirculation zone, shear layer, and
flame brush

• Radicals from the recirculation zone assist in anchoring the flame

• Turbulence generated near-wall migrates towards products
downstream of the stabilization point

• Turbulence affects the flame structure and heat losses to the wall



Direct Numerical Simulation of flame stabilization
assisted by auto-ignition at reheat conditions
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Staged gas turbine combustion

Premix
combustor

Dilution air
mixer

Sequential
combustor

Transition
piece

• Originally developed by ABB for high efficiency, load flexibility
and low emissions

• Recently improved and simplified (reduced cost) for the H-class
GT36

• First (premix) combustion stage based on flame propagation
• Second (sequential) combustion stage based on auto-ignition



Reheat burner

DNS of idealized reheat burner configuration from Ansaldo Energia
Operating conditions:
• Inlet temperature: — 1100 K
• Pressure: — 20 atm

Scaled conditions:
• Mean inlet temperature:
• Pressure: 1 atm
• Fuel: hydrogen

Turbulent
NSCBC
inflow

Ignition length

U bulk

T.

Isothermal walls

Objective:
• Understand the flame stabilization
• Identify the modes of combustion
• Quantify the role of autoignition

  NSCBC
Outflow



Turbulent
inflow

Isothermal wall
-__________

Simulation details

NSCBC
Outflow

1.25 billion grid points
20 million CPU hours
Reb = 13000

• Chemical mechanism: 9 species hydrogen-air (Li et al., 2004)

• Inflow composition: premixed H2 + 02 + N2 + H20 (134= 0.35)

• Ubulk = 200m/s, u' = 20m/s, Tiniet = 1100K, Twall = 750K
• Inflow profile: feed from DNS of a fully developed channel flow,

Reb —13, 000, Rer= 378 (viscous length scale)

Feed data
sampling plane



Enstrophy conditioned on temperature, and heat release rate (red)

Iso-surfaces of
vorticity magnitu
colored by
temperature

Two combustion configurations are observed:

• Design state: mainly auto-ignition in the combustion chamber

• Intermittent auto-ignition state: ignition in mixing section



Design combustion state
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Combustion mode: OH budget analysis
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• Auto-ignition: balance between
advection and reaction

• Flame propagation: balance between
aittusion and reaction
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Mass fraction of H 02
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Intermittent auto-ignition state

Heat release rate
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Chemical Explosive Mode Analysis

• a = I), /c1)„ : ratio of the projected non-chemical source term and
the projected chemical source term (C. Xu et al., PROCI 2018 )

Three mode are identified:
• Assisted-ignition (a > 1,_ diffusion significantly promotes reaction
• Au-co-ignition (-1 < a < chemistry plays a dominant role
• Extinction zone (a < —1): diffusion dominates chemistry and
suppresses ignition
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Compression wave

Contours of
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7 • ii(1/s) • Local rise in pressure due
to intermittent
constructive interference
pattern111

Contours of instantaneous dilatation
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-7500 • Increases local

temperature by 20-30 K

• High reactivity of hydrogen

• Decrease in ignition delay
time (30%)



Conclusions

• Performed DNS of a reheat burner at scaled conditions

• Two states of hydrogen/air combustion have been observed:

• design state: flame propagation and auto-ignition in the combustor

• intermittent auto-ignition in mixing section

• Premature auto-ignition arises due to pressure (and following
temperature) rise in mixing section

• Quantified the contribution of different modes towards heat release
using chemically explosive mode analysis (CEMA)

• Future work:

• characterize the unstable flame behavior and the conditions
leading to it

• find the inlet conditions for statistically stationary reheat flame

• perform 2D and 3D simulations with varying fuel composition and
its stratification



Parallel Programming 101 - Productivity
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Parallel Programming 101

Functionally correct
application code

Extraction of parallelism

1 
59 Exascale Computing Project

Task scheduling
Latency hiding

Mapping to target
machine

Compiler/Runtime
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Legion Programming System applied to S3D
• A data-centric parallel programming system

• A programming model for heterogeneous, distributed machines

- Automates many aspects of achieving high performance, such as extracting task- and
data-level parallelism

- Automates details of scheduling tasks and data movement (performance optimization)

- Separates the specification of tasks and data from the mapping onto a machine
(performance portability)

• Legion application example: S3D

- Production combustion simulation 
50000

- Written in -200K lines of Fortran CI_ 40009

- Direct numerical simulation using explicit z moo

methods

1,

'... S''

..... 

V

<•.> . 45. <5 .. .._.... ... ....... ............ .......

0 .(>

0 0 Legion S3D

V V MPI Fortran S3D
•

- v-

4 16 64 256 1024 4096

S3D performanNodce 
es 
Legion vs. MPI

S. Treichler et al., "S3D-Legion: An Exascale Software for Direct Numerical
Simulation (DNS) of Turbulent Combustion with Complex Multicomponent
Chemistry," CRC Book on Exascale Scientific Applications: Programming
Approaches for Scalability Performance and Portability, 2017.
bu Exascale Computing Project, www exascaleproject org
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In-situ Data Analytics in Legion
Chemical Explosive Mode Analytics (CEMA)

• CEMA: eigenvalue solve on the reaction rate Jacobian to determine the mode of
combustion

111 11 
... '111111 1111111111111111
  mill limp- --lin

mum  A911111111

 111111 III 

1111111 1111111111111111111111111111111111111111 1111111

• Run CEMA at each time step as a diagnostic to steer mesh refinement

• CEMA computation takes longer than a single explicit RK stage (6 stages/timestep)

• Dividing CEMA across RK stages and interleaving with other computation so as not
to impact other critical operations would be hard to schedule manually

• Asynchronous task execution, schedule CEMA on CPU resources

• lnteroperate Fortran CEMA with Legion code — took a day to implement
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Execution Overhead of In-situ Analytics
(CEMA) in S3D-Legion (Titan & Piz Daint)
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Legion S3D Lessons Learned

• Legion
— S3D shows potential of data-centric, task-based models

— Enables new simulation capabilities (physics, and in situ analytics)

— Code is easier to modify and maintain
• Ports are just new mappings, easy to tune for performance

• New functionality usually just means new tasks

• Legion will figure out the dependences and scheduling

• Productivity requires higher level abstraction layer for scientists to write in

• Co-Design and ECP
— The Legion/S3D experience is a tribute to co-design

— Computer and computational scientists worked closely

— Major progress on important problems resulted
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Exascale Targets: Science at Relevant Conditions

• Hybrid DNS/LES (near DNS) with dynamic
adaptive mesh refinement, multi-physics
(sprays, soot, radiation at high pressure) in
geometry

• Reactivity Stratified Compression Ignition IC
Engines - multi-stage, high pressure autoignition of
a liquid hydrocarbon fuel blend

• Natural Gas IC Engines — ignition and knock

• Scramjets — cavity stabilized shear driven lean
turbulent premixed flames, effect of products
recirculation coupled with high Re, high Ka,
compressible flames

• Gas Turbines — swirl stabilized spray combustion
gas turbines with lean premixed combustion, flarrr
stabilization, nitric oxide emissions, thermo-
acoustics

• Include in-situ analytics & visualization
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