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Introduction



3 Overview E

Big idea:
o Can compute parametric variance by computing total variance and Monte Carlo variance and taking the difference:

VP = Vtot VMC

Two implementations of idea:

o VAriance DEconvolution (VADE) — non-intrusive

o Embedded VAriance DEconvolution (EVADE) — intrusive

Monte Carlo and parametric variances, N=R=1000
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Why Care:
o Often want vp, but with Monte Carlo transport solver Vitic gets mixed in, need a way to separate, especially for small N

o Computational efficiency gains

o Groundwork for stochastic media model yielding variance caused by mixing
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4 I Mean,Variance, and Uncertainty

Monte Carlo transport is a stochastic process that yields variance even if problem is deterministic
o "Monte Carlo variance": Vivic

o "Monte Carlo uncertainty": ititic

"Monte Carlo statistical uncertainty"

"Standard deviation of the mean"

"Standard error of the mean"

- constant for problem/solver combo ("variance reduction" reduces this)

- decreases with more samples (histories)

Umc =
VMC

A51

"Monte Carlo variance"

"Variance of the distribution"
"Leading coefficient of convergence"

8
Monte Carlo variance and uncertainty, N=10

7 -

6 -

5 -

4 -
a_

2

0

I (7)

— Vmc

— — Um

0 0 0:2 0:4 0.6 0.8

T

a:
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Figures demonstrate that umc, shrinks with more histories (10, 100, 1000) whereas Vivic is constant for a problem/solver combination



5 Monte Carlo, Parametric, and Total Variances

Monte Carlo can be used as transport solver or to resolve the effects of random parameters
O "MC" — Monte Carlo transport solver, "N" — number of histories per realization

o "P" — randomness described by input parameters, "R" — number of randomly sampled realizations
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6 I Deconvolution of Variances for Parametric Variance
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What we really want:

• (T) ± utot
• vp ± Ltvp

Quantities of Interest, N=R=1000

I (T)

— Vp

— — Ucn

0  
00 0.2 0.4 0.6 0.8 10

T
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Main idea:

• Solve for Vtot and Vmc separately and deconvolve to get VP (Vp = Vtot — Vitic)

Supporting ideas:

• Use batches to get utot and Uvp

• Expand analytic/semi-analytic benchmarks for test problems

• N=1 convenient path to solving Vtot (naturally convolves variances)
• N=2 yields accurate estimates and is efficient
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Monte Carlo and parametric variances, N=R=1000
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7 I Related Work (Stochastic Media Applications)

Adams et. al, JQSRT, 1989 (deterministic solver)

o Computed utot

o Computed Vp

o Crude estimate for uvp

(it tot = Up since deterministic solver)

(17tot = Vp since deterministic solver)

Donovan et. al, NSE, 2003 (IC solver, N = 1)

o Computed Vt0t and //tot (straightforward since N = 1)

Donovan et. al, M&C, 2003 (MC solver, N >> 1)

O Computed /hot using uLt = uLc uip

O To estimate Up, assumed Vp » umc (good if N >> 1)

O Computed, but didn't report values for Vmc and Vp

Larmier et. al, JQSRT, 2018 (MC solver)

O Approaches same as Donovan's

What we want:

o (T) ± utot
o vp ± Uvp

New:

O Compute Vp w/ MC, no assumption, small N

• Rigorously compute /hot and uvp

Monte Carlo and parametric variances, N=R=1000
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8 I Role of this Work

Goal: Improved methods for uncertainty quantification and stochastic media with Monte Carlo transport

Acronyms Random Variables Takeaway(s)
(r.v.)/ Stochastic
Media (s.m.)

Olson, ANS, 2017 r. v. (s.m.) • Characterize MC/parametric convergence
• Analytic benchmark

Olson, ANS, 2018 Optimal-Cost Monte
Carlo (OCMC)

(r.v.) s.m. • Optimize MC convergence for mean

Vu, ANS, 2019 Conditional Point
Sampling (CoPS)

s.m. • New algorithm accurate in 1D

Olson, ANS, 2019 Embedded Variance r.v.
Deconvolution (EVADE)

(s.m.) • Method for computing parametric
variance

• Expand benchmarks

Vu, MEtC, 2019 s.m. • CoPS can use EVADE to compute
parametric variance

Olson, MEtC, 2019 s.m. • CoPS accurate for mean in multi-D



Variance Deconvolution
Implementations



10 Computing Total Variance

Use (or only tally) one history per realization (N = 1)

This convolves the effect of random variables and the Monte Carlo transport process

Compute (sample) total variance on results:

RUA 
//tot p ((772) (T)2)

—tot A

Mathematical justification:
O Propagation of parametric and Monte Carlo uncertainties on mean: 40t = up2 + uMc
O Relationship of parametric and Monte Carlo variances: Vtot = Vp + Vmc

O Combine to derive 40t = — Vivic) IR

O When one history per realization (N = 1),40t = VtotIR
O Therefore Vtot is leading coefficient of uncertainty estimate that can be computed with moments of N = 1 transport
computations

Monte Carlo and parametric variances, N=R=1000

0.2 0.4 0.6T 



11 I Computing Monte Carlo Variance

Monte Carlo variance for a realization r computed
NMC

VM C,r "'•°   — (T)N2
Nivic — 1 (T2)Nmc,r

Monte Carlo variance is different for different problems, i.e., for
different values of the random variables (see figure to right)

Must compute the average
uncertainty space:

onte Carlo variance over the

1
VMC VMC,ritmc
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12 I Non-intrusive Implementation:VADE

VAriance DEconvolution (VADE) — non-intrusive implementation

° (Can be implemented with existing transport solver and external scripting)

Task 1: Compute Vmc

o Compute Vmc,, on each of a collection
of realizations with N>1

o Take average of Vmc,, for Vmc

Task 2: Compute Vtot

o Compute Ti on each of a collection of
realizations with N=1

o Use these results to compute Vtot

Task 3: Compute Vp

o Use variance deconvolution to get Vp

8
Monte Carlo and parametric variances, N=R=1000
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I13 Intrusive Implementation with Batches: EVADE :

Embedded VAriance DEconvolution (EVADE) — intrusive implementation

Compute uvc, (and /hot) using batches of realizations:

1

UVP = 07P2)B (170B);
u„t = , (((T)2) B — ((T))0

Practically:

• Compute Vtot for batch tallying one history per realization in batch

• Compute Vivic and (T) for batch by averaging estimates from each realization in batch

• Compute Vp for that batch (Vp = Vtot Vivic)

• Estimate (Vp) and (T) (and (Vt0t) and (Vit4C) if desired) and uncertainties over batches

(T), (VP), (Vtot),(VMC)
utot tivtot, UV MC

(T), VP, Vtot, VMC

(T)r ,

TL

VMC,r

Diagram of EVADE

Computation

Batches

Realization

Histories
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Monte Carlo and parametric variances, N=R=1000
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Special Case Possible Values

If:

• Analog MC

• Leakage tally

• # Hist/realization = 2

• # Realization/batch = 2

Then:

(T) E [0,1], (Vp) E [-0.5,0.5], (Vtot) E [0,0.5], (VMC) E [0,0.5]
Note: If (Vtot) (Vnic) (Vp) E [0,0.5]

(T) E {0,0.25,0.5,0.75,1}, VP E —0.5, —0.25,0,0.25,0.5},
17tot E Vitic E {0,0.25,0.5}

(T)r E

TL E {0,1}

VMC,r E 0,0.5)



Expand Analytic/Semi-Analytic
Benchmarks



1 5  Problem Description

Stochastic Transport Equation (attenuation physics only)

thp (x co)
 + Et (x, (0)1P(x (D = 0,11, ) ,

ax

0 < x < L; —1 < < 1,
ipopp.) = 6(1 — µ), µ> 0; ip (1, = op µ< 0

o x, co — spatial, angular, and stochastic dependence

o Et (x, w) — total cross section, source of uncertainty

(0) — angular flux, response

O Beam source on "left" boundary, otherwise vacuum BCs

O Quantity of interest: Transmittance

Sources of parametric uncertainty (described on next slides)
o Random total cross sections

O Random material boundaries



I Analytic Benchmark Random Cross Section Problem

Uniformly distributed random cross sections:

Et,m(w) = (Et,m) + Et,ijm(6)),

7,11(6)) E U[-1,1] Vm c {1,2, ...,M}

Analytic Transmittance (T) for realization co:

T(w) = exp[—T(o)] ; --t-(w) = Emm,,Et,m(w)Axm

Analytic Moment of Expectation of Transmittance:

M

[Tp]
 fli ... fli Tp (w) (21)E  c4.-1 ... c4...114

sinh[pEt,mAxm
IE[TP] = irm,i exp[—p(Et,m)Axm] 

l 

PEt,m6ocm

Et

.

J+(0): source



I Analytic Benchmark Random Boundary Location Problem

Uniformly distributed random boundary locations:

xm(co) = (xm) + x7n, m(co),

x1(w) if m = 1

Axm(W) = co) — xm_i(W) if 1 < m < M

L — xit4_1(co) if m= M

Gi(co) E U[-1,1] Vin E {1,2, ... , M — 1}

Analytic Transmittance (T) for realization 0):

T(w) = exp[—T(w)] ; r(w) = Emm,i Et,mAxm (co)

Analytic Moment of Expectation of Transmittance:

ME[Tp] f 11 ... fl 17,79 (w) (21) ci(l ... d(m. 1

Zt

•

J+(0): source

x

— ocm_io (rTivi_i sinh[13(<Et,m-i)-(Et,m)) 7;.])
IE[TP] = (1-11Li exp[—pat,m)((xm) 

lim=1 P((zt,m.-1)-(Et,m))1;.



18  Semi-Analytic Benchmark for Problem with Both Uncertainty
Sources

Uniformly distributed random cross sections
and material boundary locations:

Zt,m(W) = at,m) Zt,n1WW)

xm((o) = ()cm) + cjm(co)

tri(co), W(A)) E U[-1,1] Vin
Zt

Analytic Transmittance (T) for realization (A):

T (co) = exp[--c(w)] ; r(co) = Eig=1Zt,m(co)Axm(co)

j+ (0): source

 ►
x = 0 x = L

Semi-analytic Moment of Expectation of Transmittance (numerically integrate analytic cross section solution):

E VP] = 1 f± 2M1 TP (w) (1) 2 ••• c1G4cli •••

M-11 sinh[pEt,mAxm(a))] IE[TP] = (-
2
) f 1 ••• fl c1( ••• exp[—pat,m)Axm (co)]-1 -1 1 PEt,mAxm((0)

1



1 9 Analytic Benchmark for Total and Monte Carlo Variances

Parametric variance
o Computed from analytic/semi-analytic moments:

Vp = IE[T2] — 1E2 [7]

Total Variance
o With analog Monte Carlo and one history per realization, all tallies 77, are either 0 or 1 such that all tallied moments are the same:

(T)Rtot = CTP)RtotVP
o In the limit of many realizations, the Monte Carlo simulation yields the expected value: lim (T)Rtot = IE  [T]Rtot—)00
o The limit of the Monte Carlo computation thus yields an analytic solution for variance based on analytic/semi-analytic moments:

Rtot 
vtot = lim D (772) (T)2)

tot 
= EV] — 1E2 [1]

Rtot—)wit — I

Monte Carlo Variance
o Using variance deconvolution:

Vitic = Vtot Vp — E[T] — E[T2]
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Numerical Results



21 Description of Problems

Problem 1: Cross Sections are Random Variables

Problem 2: Boundary Locations are Random Variables

Problem 3: Both quantities are Random Variables

All problems use parameters in table

Et
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TABLE I. Stochastic Attenuation Problem Parameters

in = 0 M = 1 111 = 2 in = 3

(Et,m) - 0.9 0.15 0.6

-ft,rn 0.7 0.12 0.5

(x,n) 0.0 2.0 5.0 6.0

Fcm 1.75 0.95

J+(0): source

0 x

x = 0 x = L

(0) = T I

0.0 0.2 04 06
T



22 High-Fidelity Solve - Example

VADE and EVADE both accurate for each quantity on
each problem type

TABLE II. Higher-Fidelity Solver Pararneters

VADE EVADE

Rtot = 108 RAir = 104 f?tot = f?Aic = 108

Ntot = 1 A I Aic = 104 Ntot = 1 N Mc = 2

B =N/A B = 5 x 107

NT OT = 2 x 108 NT OT = 2 x 108

TABLE III. Higher-Fidelity Simulation Representative Results

Randorn Cross Sections

Quantity Analytic VADE EVADE

(T) 0.083783 0.083981 0.083773± 0.000020

vp 0.005505 0.005637 0.005509± 0.000022

Vt, 0.076763 0.076749 0.076762± 0.000026

VAIC 0.071259 0.071112 0.071253± 0.000018

Randorn Boundaries

Quantity Analytic VADE EVADE

(T) 0.078277 0.078828 0.078314± 0.000020

lip 0.003731 0.002782 0.003734± 0.000021

Vt„ 0.072150 0.072140 0.072176± 0.000025

Vivic 0.068419 0.069358 0.068442± 0.000017

Randorn Cross Sections and Boundaries

Quantity Semi-An. VADE EVADE

(T) 0.104428 0.103672 0.104398± 0.000023

Vp 0.010069 0.011029 0.010097± 0.000024

Vt, 0.093523 0.093503 0.093532± 0.000028

V Airc 0.083454 0.082474 0.083435± 0.000019



23 Low-Fidelity Solves - Statistical Verification

EVADE uncertainty estimates accurate for each
quantity (E < u -68% of time)

EVADE -an order of magnitude more precise than
VADE for three quantities (including two target
quantitie s)

VADE -25% more precise than EVADE for total
variance - effect of batching?

TABLE IV. Lower-Fidelity Solver Parameters

VADE EVADE

Rtot = 105 Rmc = 102 Rtot = RivIc = 105

Nkit = 1 N Mc = 103 Ntot = 1 Nmc = 2

B =I\ 1/ A B = 5 x 104

NTOT = 2 x 105 NTOT = 2 x 105

TABLE V. Lower-Fidelity Sirnulation Ensernble Results

Randorn Cross Sections

Quantity (E)VADE (E)EVADE (11)EVADE E < u

(T) 0.00375 0.00052 0.00064 668/1000

vp 0.00551 0.00054 0.00068 673/1000

Vtot 0.00052 0.00065 0.00081 681/1000

Vivirc 0.00550 0.00044 0.00055 681/1000

Randorn Boundaries

Quantity (E)VADE (E) EVADE (11)EVADE E < 14

(T) 0.00333 0.00049 0.00062 658/1000

vP 0.00525 0.00053 0.00065 674/1000

vtot 0.00053 0.00065 0.00079 661/1000

Vmc 0.00521 0.00043 0.00054 682/1000

Random Cross Sections and Boundaries

Quantity (E)VADE (E)EVADE (U)EVADE E < 14

(T) 0.00468 0.00058 0.00072 681/1000

Vp 0.00621 0.00059 0.00077 702/1000

Vtot 0.00057 0.00069 0.00087 707/1000

Vkic 0.00620 0.00047 0.00059 685/1000



Conclusions and Future Work



25 Conclusions

Deconvolution of variance to get Vp with Monte Carlo solver and no Vp » umc. assumption

O non-intrusively (VADE), intrusively (EVADE)

O for three r.v. problem types
Monte Carlo and parametric variances, N=R=1000

Use of batches to accurately get /hot and uvp (in EVADE)

Deconvolution demonstrated w/ N=2 (in EVADE)

O more precise than N>2 (in VADE)

o N=2 optimized?
0.2 0.4 0.6T 

Analytic benchmarks expanded

o Random boundary location problem (analytic)

o Random cross section and boundary location problem (semi-analytic)

o Vp, Vtot, and Vitic (analytic)

0 8 1 0



26 I Future Work

Why vtot more precise in VADE than EVADE (effect of batches?)

Optimal-Cost Monte Carlo (OCMC) analysis for Vp

O N=2 optimal?

O N=1 for some realizations, N=2 for others?

Apply to stochastic media problems:
O EVADE with CoPS for Vp (Vu, M&C, 2019)

o Problems with both traditional r.v.s and stochastic media

o Vtot with one model and Vitic with a different one (VADE)

(e.g., ytot using chord length sampling, VMC using realizations)

Monte Carlo and parametric variances, N=R=1000

0 0 0.2 0.4 0.6
T
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28 Questions

•


