This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. 1.
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Overview

Big idea:
> Can compute parametric variance by computing total variance and Monte Carlo variance and taking the difference:
Ve = Viot = Vmc

Monte Carlo and parametric variances, N=R=1000
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Two implementations of idea: A |
> VAriance DEconvolution (VADE) — non-intrusive

> Embedded VAriance DEconvolution (EVADE) — intrusive d
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Why Care:
> Often want Vp, but with Monte Carlo transport solver V¢ gets mixed in, need a way to separate, especially for small N
o Computational efficiency gains

> Groundwork for stochastic media model yielding variance caused by mixing



4 | Mean,Variance, and Uncertainty ) |
Monte Carlo transport is a stochastic process that yields variance even if problem is deterministic
> “Monte Carlo variance™: V¢ - constant for problem/solver combo (“variance reduction” reduces this)
° “Monte Carlo uncertainty”: Uy - decreases with more samples (histories)
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Figures demonstrate that 1y, shrinks with more histories (10, 100, 1000) whereas V), is constant for a problem/solver combination I



5 | Monte Carlo, Parametric, and Total Variances
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Monte Carlo can be used as transport solver or to resolve the effects of random parameters

o “MC” — Monte Carlo transport solver,

“N” — number of histories per realization

o “P” — randomness described by input parameters, “R” — number of randomly sampled realizations

If no parametric randomness
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Monte Carlo variance and uncertainty, N=1000
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If parametric randomness and solver
uncertainty
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Utor = Upyc T Up
Viot = Ve +Vp

Monte Carlo and parametric variances, N=R=1000
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P(T)

Deconvolution of Variances for Parametric Variance

6
What we really want:
o (T)xu
= Vp i uVP
5 Quantities of Interest, N=R=1000
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Common quantities of interest

1.0

Main idea:

* Solve for Vi, and Vy, ¢ separately and deconvolve to get Vp (Vp = Vigr — Vi)

Supporting ideas:

* Use batches to get Uy and uy,

* Expand analytic/semi-analytic benchmarks for test problems

* N=1 convenient path to solving V;,+ (naturally convolves variances)
* N=2 yields accurate estimates and is efficient

. Monte Carlo and parametric variances, N=R=1000
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7 | Related Work (Stochastic Media Applications)

Adams et. al, JQSRT, 1989 (deterministic solver) What we want:

o Computed Ugpt (Utor = Up since deterministic solver) o (T) + Upys

o Computed Vp (Vior = Vp since deterministic solver) ° Vp X uy,

° Crude estimate for u

ude estimate for uy, New:
o Compute Vp w/ MC, no assumption, small N

Donovan et. al, NSE, 2003 (MC solver, N = 1) ° Rigorously compute Uy and Uy,

o Computed Vipr and Ugor (straightforward since N = 1)
Donovan et. al, M&C, 2003 (MC SOlVCf, N > 1> Monte Carlo and parametric variances, N=R=1000

| M

— V/MC

o Computed Uyt using Wit = Wifpe+ US
° To estimate Up, assumed Vp > Uy, (good if N >> 1)
> Computed, but didn’t report values for Vy;- and Vp

Larmier et. al, JQSRT, 2018 (MC solver)

o Approaches same as Donovan’s




s I Role of this Work

Goal: Improved methods for uncertainty quantification and stochastic media with Monte Catlo transport |

Acronyms

Random Variables
(r.v.)/ Stochastic

Takeaway(s)

Olson, ANS, 2017

Olson, ANS, 2018

Vu, ANS, 2019

Olson, ANS, 2019

Vu, M&C, 2019

Olson, M&C, 2019

Optimal-Cost Monte
Carlo (OCMQ)

Conditional Point
Sampling (CoPS)

Embedded Variance
Deconvolution (EVADE)

Media (s.m.)

r.V. (s.m.)

(r.v.) s.m.
S.m.

r.v. (s.m.)
S.m.
s.m.

Characterize MC/parametric convergence
Analytic benchmark

Optimize MC convergence for mean

New algorithm accurate in 1D

Method for computing parametric
variance
Expand benchmarks

CoPS can use EVADE to compute
parametric variance

CoPS accurate for mean in multi-D
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Computing Total Variance

Use (or only tally) one history per realization (N = 1)
This convolves the effect of random variables and the Monte Catlo transport process

Compute <S ample) total variance On re Sults: . Monte Carlo and paramet:ic variances, N=R=1000
] I ™
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Mathematical justification: » - 2
o Propagation of parametric and Monte Carlo uncertainties on mean: Uiy, = uf, + U,

° Relationship of parametric and Monte Catlo variances: Vior = V), + Viyc
Combine to detive uz,, = (Vtot — (1 — %) VMC) /R

When one history per realization (N = 1), u?,; = Viot/R

Therefore Vi is leading coefficient of uncertainty estimate that can be computed with moments of N = 1 transport
computations

o

o
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Computing Monte Carlo Variance

Monte Carlo variance for a realization r computed

~ me_ ((TZ)
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Nypcr

~ De, )

Monte Carlo variance 1s different for different problems, i.e., for

different values of the random wvariables (see figure to right)

Must compute the average Monte Carlo variance over the

uncertainty space:
Rmc

Tor Vuc

Monte Carlo and parametric variances, N=R=1000
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Transmittance and Monte Carlo variance of
transmittance (analytically solved) as a function
of random total cross section for a single-
material attenuation problem. Demonstrates V.
varying as a function of random variable.



12 I Non-intrusive Implementation: VADE

VAriance DEconvolution (VADE) — non-intrusive implementation

° (Can be implemented with existing transport solver and external scripting)

Task 1: Compute Vi

> Compute V¢ - on each of a collection
of realizations with N>1

° Take average of Vy¢ - for Ve

Task 2: Compute Vit

Monte Carlo and parametric variances, N=R=1000 I
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> Compute T; on each of a collection of
realizations with N=1

o Use these results to compute Vit

Task 3: Compute Vp (T), Vb, Vuc  External

> Use variance deconvolution to get Vp

(T)»  Vmcr Computation . . .. (), Ve  External -
T; Histories I“ “I

Diagram of VADE I
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13 | Intrusive Implementation with Batches: EVADE

Embedded VAriance DEconvolution (EVADE) — intrusive implementation

Compute Uy, (and Uzye) using batches of realizations:

uy, =5 () = h)) o = 55 (12, = (T3)

Practically:
> Compute ;4 for batch tallying one history per realization in batch

o Compute Ve and (T) for batch by averaging estimates from each realization in batch
° Compute V, for that batch (V, = Vior — V)

° Bstimate (V},) and (T') (and (Vo) and (Vjy¢) if desired) and uncertainties over batches

Diagram of EVADE
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Monte Carlo and parametric variances, N=R=1000
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Special Case Possible Values

*  Analog MC

* Leakage tally

*  # Hist/realization = 2

e # Realization/batch = 2
Then:

(T) € [0,1], (Vp) € [~0.5,0.5], (Vior) € [0,0.5], (Visc) € [0,0.5]
Note: If (Vpr) = (Vige) : (Vp) € [0,0.5]

(T) € {0,0.25,0.5,0.75,1},  Vp € {—0.5,—0.25,0,0.25,0.5},

Vior € {0,0.5}, Ve € {0,0.25,0.5}
(T),- € {0,0.5,1}, Vmcr € {0,0.5}
T; € {0,1}




Expand Analytic/Semi-Analytic
Benchmarks




15 | Problem Description

Stochastic Transport Equation (attenuation physics only) |

u a"’(’;’x“ ) T, ) gy 8) = O,

0<x<L; -1<u<li,
YO,u) =60 —w,u>0y(Lw =0,u<0

° X, U, w — spatial, angular, and stochastic dependence 1

o

2+ (x, w) — total cross section, source of uncertainty
> P(x, U, w) —angular flux, response
> Beam source on “left” boundary, otherwise vacuum BCs

> Quantity of interest: Transmittance

Sources of parametric uncertainty (described on next slides)

o Random total cross sections

o Random material boundaries



Analytic Benchmark Random Cross Section Problem

Uniformly distributed random cross sections:

z:t,m (w) = (Zt,m) + Z?,\mfm(w);
¢m(w) € U[—-1,1] vm e {1,2,..., M}

Analytic Transmittance (T) for realization w:

T(w) = exp[-t(w)]; 7(w) = Xm=1 Ztm(w)Axpy

Analytic Moment of Expectation of Transmittance:

E[T?] = [ .. [} TP (w) (%)M dE, ...d&y, =

sinh[pZ¢ 1 Axpy ]

E[TP] = [Tn=1 exp|—p(Z¢,m) A%, ]

Pt mAxm

J7(0): source

L




Analytic Benchmark Random Boundary Location Problem

Uniformly distributed random boundary locations:

xm(w) = (Xm> + ){‘;’L(m(w);

x1 (w) ifm=1
Axpy (@) =% Xmw) — Xm-1(w) if 1<m<M o
L—xy_q1(w) ifm=M

(@) EU[-11] Vme({12 ..M —1)

Analytic Transmittance (T) for realization w:

T(w) = exp[-t()]; (@) = Xm=1 ZtmAxm (w)

Analytic Moment of Expectation of Transmittance:
E[T?] = f f Tp(w)( ) ddy ..dfy—1 =
= (M= exp =D {Zem) () — (tm1)]) (A

J*(0): source

»
>

151nh[p(<ztm 1)— (Ztm» xm]

JT0) =T

p((zt,m 1)— <Zt,m)) Xm

v
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Semi-Analytic Benchmark for Problem with Both Uncertainty
Sources

Uniformly distributed random cross sections ST
and material boundary locations:

2:t,m (w) = (Zt,m) + z:/t,\mScm((U)

Xm (W) = (X)) + G (w) X =

J*(0): source T S

JT0) =T

¢m(w), (n(w) € U[-1,1] Ym

Analytic Transmittance (T) for realization w:

T(w) =exp[-t(w)]; (@) = Xm=1Z¢m(w)Axy (@) x=0 x

Semi-analytic Moment of Expectation of Transmittance (numerically integrate analytic cross section solution):

E[T?] = [, .. [1 TP (w) (%) A&, ...dEydly . dly_1 =

sinh[pZ¢ ;mAxy (w)]
1273 %t mAXm (W)

EIT?) = (2) [ G Ao T exp[~P(Eem) B ()]

v
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19 | Analytic Benchmark for Total and Monte Carlo Variances

Parametric variance
> Computed from analytic/semi-analytic moments:

V, = E[T?| — E2[T]

Total Variance
> With analog Monte Carlo and one history per realization, all tallies T} are either 0 or 1 such that all tallied moments are the same:

(T)Ryoe = {TP)R VP

o In the limit of many realizations, the Monte Catlo simulation yields the expected value: . lim (T)g,, . = E[T]
tot %

° The limit of the Monte Carlo computation thus yields an analytic solution for variance based on analytic/semi-analytic moments:

R
Vie = lim —2—((T2) —(T)?) = E[T] — E2[T]
Reot>® Repr — 1

| | m
! it
1
1

— Vp

Monte Carlo Variance
° Using variance deconvolution:
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Description of Problems

Problem 1: Cross Sections are Random Variables
Problem 2: Boundary Locations are Random Variables

Problem 3: Both quantities are Random Variables

All problems use parameters in table $ Ly =

Monte Carlo and parametric variances, N=R=1000
T
4 I m
l: —VMC
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TABLE I. Stochastic Attenuation Problem Parameters
m=0 m=1 m=2 | m=3
(Zsm) s 0.9 0.15 0.6
B - 07 | 012 | 05
I 0.0 2.0 5.0 6.0
j . 1.75 0.95 =
J*(0): source B e JTO) =T
x [
x =0 xr =L
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2 | High-Fidelity Solve — Example '»

TABLE III. Higher-Fidelity Simulation Representative Results

|

Random Cross Sections

Quantity | Analytic VADE EVADE

(T) 0.083783 | 0.083981 | 0.083773 + 0.000020

Vp 0.005505 | 0.005637 | 0.005509 + 0.000022

VADE and EVADE both accurate for each quantity on Viot 0.076763 | 0.076749 | 0.076762 + 0.000026
each problem type Ve 0.071259 | 0.071112 | 0.071253 + 0.000018
Random Boundaries
Quantity | Analytic VADE EVADE

(T) 0.078277 | 0.078828 | 0.078314 + 0.000020

Vp 0.003731 | 0.002782 | 0.003734 + 0.000021

Viot 0.072150 | 0.072140 | 0.072176 £ 0.000025

Ve 0.068419 | 0.069358 | 0.068442 + 0.000017

TABLE 1L Higher-Fidelity Solver Parameters Random Cross Sections and Boundaries

VADE EVADE Quantity | Semi-An. | VADE EVADE
Rii = 10° | Ryc =10* || Ry = Ryc = 10° (T) 0.104428 | 0.103672 | 0.104398 + 0.000023
Not=1 | Nyc =10" || Ny =1 | Nyc =2 Vp 0.010069 | 0.011029 | 0.010097 + 0.000024
B =N/A B=5x10’ V., 0.093523 | 0.093503 | 0.093532 + 0.000028
Nror =2 x 10° Nror =2 % 10° Ve | 0.083454 | 0.082474 | 0.083435 + 0.000019




23 I Low-Fidelity Solves — Statistical Verification

EVADE uncertainty estimates accurate for each
quantity (€ < u ~68% of time)

EVADE ~an order of magnitude more precise than
VADRE for three quantities (including two target
quantities)

VADE ~25% more precise than EVADE for total
variance — effect of batching?

TABLE IV. Lower-Fidelity Solver Parameters

VADE EVADE
Ry =10° | Ryc =10* | Ry = Ryc = 10°
Ny=1 Nyge=1F | Ny=1 | Ny =2
B =N/A B=5x 10
Nror =2 10° Nror = 2% 10°

TABLE V. Lower-Fidelity Simulation Ensemble Results

Random Cross Sections

Quantity | (€)vape || (€)evape | {(U)EvapE €<u
(T) 0.00375 || 0.00052 | 0.00064 | 668/1000
Vp 0.00551 0.00054 | 0.00068 | 673/1000
Vit 0.00052 || 0.00065 | 0.00081 | 681/1000
Vue 0.00550 || 0.00044 | 0.00055 | 681/1000

Random Boundaries

Quantity | {€)vape || (€)evape | ()EvADE E<U
(T) 0.00333 || 0.00049 | 0.00062 | 658/1000
Vp 0.00525 || 0.00053 | 0.00065 | 674/1000
Vior 0.00053 || 0.00065 | 0.00079 | 661/1000
Ve 0.00521 0.00043 | 0.00054 | 682/1000

Random Cross Sections and Boundaries

Quantity | (€)vape | (€)evape | {(WEvaDE e<u
(T) 0.00468 || 0.00058 | 0.00072 | 681/1000
Vp 0.00621 0.00059 | 0.00077 | 702/1000
Ve 0.00057 || 0.00069 | 0.00087 | 707/1000
Vuce 0.00620 || 0.00047 | 0.00059 | 685/1000

|

T Tl






25 | Conclusions

Deconvolution of variance to get V/p with Monte Carlo solver and no Vp >> uy¢ assumption
> non-intrusively (VADE), intrusively (EVADE)

° for three r.v. problem types

-

Monte Carlo and parametric variances, N=R=1000

Use of batches to accurately get Uty and Uy, (in EVADE) é*

w o ~ ©
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Deconvolution demonstrated w/ N=2 (in EVADE)
> more precise than N>2 (in VADE)

> N=2 optimized? N
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Analytic benchmarks expanded
> Random boundary location problem (analytic)

> Random cross section and boundary location problem (semi-analytic)

° W, Viot, and V¢ (analytic)



26 | Future Work

Why Vot more precise in VADE than EVADE (effect of batches?)

Monte Carlo and parametric variances, N=R=1000
T

Optimal-Cost Monte Carlo (OCMC) analysis for Vp | LE)

o N=2 optimal?

P(M
FS

o N=1 for some realizations, N=2 for others?

Apply to stochastic media problems:
> EVADE with CoPS for Vp (Vu, M&C, 2019)
> Problems with both traditional r.v.s and stochastic media
° Vior with one model and V¢ with a different one (VADE)

° (e.g., Viot using chord length sampling, Vy, using realizations)
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