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2 | Phononic Crystals

*What is a Phononic Crystal (PnC)? Bulk

o A periodic arrangement of two or more materials which exhibits anomalous dispersion for phonons

o Can have bandgaps, i.e. frequency ranges in which phonon transmission in the material is prohibited

*How does a PnC Work?

o Created by superposing Mie and Bragg resonant scattering by a periodic arrangement of scattering
centers in a lattice

PnC

o Requires sufficient acoustic impedance mismatch

o Provides macro-to-micro scalable (N+1)D control (2D lattice = 3D control) of the phonon
distribution
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*RF signal processing (filters, delay lines)

*Acoustic and ultrasonic applications

oL " Underwater
High Q-factor Cavities stealth

*Phonon density of states (DoS) manipulation

*Thermal conductivity engineering 7\
~
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*Frequency-selective vibration dampening

Quiet engines
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Phonon DoS engineering
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4 | Signal Processing with Phononic Crystals
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5 | Mechanical Analogue to Photonic Crystals

*Photonic crystals *Phononic crystals
o Periodic refractive index mismatch o Periodic mechanical impedance mismatch
o Manipulate photon propagation with O Manipulate the propagation of elastic/acoustic
periodicity of photon wavelength waves with periodicity of the acoustic
wavelength
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¢ I Macro-Scale Phononic Crystals

* Aluminum-—air macro-scale PnC
o Excellent machinability
o Relaxed fabrication constraints

o Rapid fabrication turn around

*Simple cubic lattice geometry
o Able to achieve large bandgaps

*Simulations and measured results are scaled to the reduced
frequency Q = wa/2nC,
O w 1s the angular frequency, C, 1s the transverse sound velocity,
and « is the lattice constant

o Behavior scales directly to the micro-/nano-scale



7 I Phononic Crystal Design

*Material: Al

o Lattice constant ¢ = 8mm —
o Slab thickness 7= 4mm (#/a = 0.5) 0-5//

o Hole radius » = 3.84mm (r/a = 0.48)

\?

*Bandgap range :
o Calculated bandgap for the full irreducible Brillouin zone from
149 — 202kHz, corresponding to 0.27 to 0.366 in normalized
frequency

----------------------------------------------------------------------------------------------------

o Gap-to-midgap ratio = 30%
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8 | Experimental Setup




9 I PnC Bandgap Characterization

*Measured transmission was normalized with slab (bulk Al
with no holes)

0 v
o Transmission is attenuated by >20dB 1in the frequency range 0.15 ’ , ﬁ"f ) 03 4 Zav 0.4
0.26 < Q < 0.34 . - ¥-
o Agrees well with the theoretically predicted 0.27 < L < 0.366 —Experiment
*Finite-element method simulation used to verify the results 10 —FEM

o Difference due to fabrication imperfection and finite size of the
tabricated sample
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10 I PnC Waveguide Design -

PnC along the propagation direction.

*The defect width is defined as:

w = (1+o) a—2r

*Waveguide created by introducing a line defect in the |
o o = 0 corresponds to the perfect PnC (no defect) |

o a = 1 corresponds to the so-called W1 waveguide

*The band structure was studied versus defect width

Normalized Frequency

o An isolated, single-mode waveguide was found for « = 0.1
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11 I PnC Waveguide Design

*The modes indicated in black and red result from the
introduction of the line defect

*The lower-frequency mode is leaky

o Energy propagates throughout the crystal and is not
strongly guided

*The higher-frequency mode is a guided mode
o Energy is well-confined

o Waveguide is single-mode from about 0.3 < 2 < (.32
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12 I PnC Waveguide Characterization

*Passband measured within the bandgap from 0.25 < Q < 0.287

*Transmission peak 1s centered at 0.32 in normalized frequency
(177kHz) with only 1dB loss

*Disagreement in peak frequency between measurement and
simulation is less than 2%

o Discrepancy attributed to the difference between theoretical and
actual material properties
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i3 I PnC Bent Waveguide Design -
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*A 90° bent waveguide was designed and fabricated with o = 0.1

o Lattice was slightly perturbed in the bend region by the introduction
of reduced-size holes
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14 I PnC Bent Waveguide Design

*Similar to the straight waveguide, the lower-frequency mode
is not well-localized and mostly reflects back into the input

*The higher-frequency mode at 2=0.32 is well-localized

o The incident wave propagates couples efficiently in the
perpendicular direction.

*Measured transmission coefficient of the bent waveguide =

-2.3dB

o Corresponds to 76% energy transmission efficiency

Normalized Transmission (dB)
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s I PnC T-Splitter Design

*A “T” splitter waveguide was designed and fabricated with
o« = 0.1
o Splitting angle is 180°
*As with the bent waveguide, the lattice was slightly

perturbed in the bend region by the introduction of
reduced-size holes

*Waves are excited at the bottom of the device and
measured at either of the two output arms




16 | PnC T-Splitter Design -

*The splitter shows a passband from 0.28-0.3 in or Defected T-Splitter
normalized frequency

o The average transmission is about -3.4dB, which
corresponds to 80% energy transmission
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*FEM results are in a good agreement with experimental
measurement
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o FEM results shows a deeper and wider bandgap, similar to
the perfect PnC
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17 I PnC Y-Splitter Design

*A “Y” splitter waveguide was also designed and fabricated with o = 0.1

*Lattice 1s changed from cubic to hexagonal in the splitting region
o Splitting angle is 30°

*Measured average transmission is about -2.86dB, which corresponds to
72% energy transmission
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18 I Conclusions

*Well-confined waveguiding can be realized by mode engineering in PnCs

*Transmission as high as 90% in the bent waveguide was demonstrated

*Efficient power splitting was demonstrated in both “T”” (180°) and “Y” (30°) splitters

*These designs otfers a paradigm based on bulk acoustic waves (BAW) for the design of

next generation RF signal processing devices filters
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