
Demonstration of Waveguiding,
Bends, Splitters in Macro-Scale
Phononic Crystal Devices
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2 Phononic Crystals

•What is a Phononic Crystal (PnC)?

o A periodic arrangement of two or more materials which exhibits anomalous dispersion for phonons

o Can have bandgaps, i.e. frequency ranges in which phonon transmission in the material is prohibited

•How does a PnC Work?

o Created by superposing Mie and Bragg resonant scattering by a periodic arrangement of scattering

centers in a lattice

o Requires sufficient acoustic impedance mismatch

o Provides macro-to-micro scalable (N+1)D control (2D lattice 4 3D control) of the phonon
distribution
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3 I Applications of Phononic Crystals

• RF signal processing (filters, delay lines)

•Acoustic and ultrasonic applications

•High Q-factor Cavities

•Phonon density of states (DoS) manipulation

•Thermal conductivity engineering

*Frequency-selective vibration dampening
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4 Signal Processing with Phononic Crystals
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5 I Mechanical Analogue to Photonic Crystals

•Photonic crystals

o Periodic refractive index mismatch

o Manipulate photon propagation with
periodicity of photon wavelength
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•Phononic crystals

o Periodic mechanical impedance mismatch

o Manipulate the propagation of elastic/acoustic
waves with periodicity of the acoustic
wavelength
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6 Macro-Scale Phononic Crystals

*Aluminum—air macro-scale PnC
o Excellent machinability

o Relaxed fabrication constraints

o Rapid fabrication turn around

•Simple cubic lattice geometry

o Able to achieve large bandgaps

•Simulations and measured results are scaled to the
frequency S2 = coa/27cc
o co is the angular frequency, cis the transverse sound
and a is the lattice constant

o Behavior scales directly to the micro-/nano-scale

reduced

velocity,

20 MM

• toefiowiewbotimeroe••••
..009000000000000•000000

••••••••••••••••••••••••
••••••••••••••.....eireit
•••••••••••••••••••••••••

• ofbisomer.....••••••••••
.•••••••••••••••••••••
osee••••••••••••• mos

eimbefoefae•
••••••••••
040090•900.
0000000000
0990000.00
41100004110.11100
0000.00000



•

7 I Phononic Crystal Design

aterial: Al

o Lattice constant a = 8mm

o Slab thickness t = 4mm (t/ a = 0.5)

o Hole radius r = 3.84mm (r/ a = 0.48)

•Bandgap range :

o Calculated bandgap for the full irreducible Brillouin zone from
149 — 202kHz, corresponding to 0.27 to 0.366 in normalized
frequency

o Gap-to-midgap ratio = 30%
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8 Experimental Setup
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9 PnC Bandgap Characterization

•Measured transmission was normalized with slab (bulk Al
with no holes)
o Transmission is attenuated by >20dB in the frequency range
0.26 < < 0.34

o Agrees well with the theoretically predicted 0.27 < SL < 0.366

•Finite-element method simulation used to verify the results

o Difference due to fabrication imperfection and finite size of the
fabricated sample
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PnC Waveguide Design

•Waveguide created by introducing a line defect in the
PnC along the propagation direction.

•The defect width is defined as:

w = (1+oc) a-2r

o oc = 0 corresponds to the perfect PnC (no defect)

o oc = 1 corresponds to the so-called W1 waveguide

•The band structure was studied versus defect width
o An isolated, single-mode waveguide was found for oc = 0.1

o Stronger confinement of the propagating energy 4
higher efficiency
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11 PnC Waveguide Design

•The modes indicated in black and red result from the
introduction of the line defect

•The lower-frequency mode is leaky
o Energy propagates throughout the crystal and is not
strongly guided

•The higher-frequency mode is a guided mode
o Energy is well-confined

o Waveguide is single-mode from about 0.3 < S2 < 0.32
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12 I PnC Waveguide Characterization

•Passband measured within the bandgap from 0.25 < Q < 0.287

*Transmission peak is centered at 0.32 in normalized frequency
(177kHz) with only ldB loss

•Disagreement in peak frequency between measurement and
simulation is less than 2%

o Discrepancy attributed to the difference between theoretical and
actual material properties
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13 I PnC BentWaveguide Design

*A 90° bent waveguide was designed and fabricated with oc = 0.1
o Lattice was slightly perturbed in the bend region by the introduction
of reduced-size holes

o The size of the small holes were chosen to maintain the critical
dimension (minimum hole separation distance)

o A 45° chamfer angle was introduced at the outer edge of the bend
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1 4 PnC BentWaveguide Design

*Similar to the straight waveguide, the lower-frequency mode
is not well-localized and mostly reflects back into the input

•The higher-frequency mode at Q=0.32 is well-localized

o The incident wave propagates couples efficiently in the
perpendicular direction.

*Measured transmission coefficient of the bent waveguide =
-2.3dB

o Corresponds to 76% energy transmission efficiency
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1 5 I PnC T-Splitter Design

*A "T" splitter waveguide was designed and fabricated with

oc -= 0.1

o Splitting angle is 180°

•As with the bent waveguide, the lattice was slightly

perturbed in the bend region by the introduction of

reduced-size holes

•Waves are excited at the bottom of the device and

measured at either of the two output arms
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16 I PnC T-Splitter Design

•The splitter shows a passband from 0.28-0.3 in
normalized frequency

o The average transmission is about -3.4dB, which
corresponds to 80% energy transmission

•FEM results are in a good agreement with experimental
measurement

o FEM results shows a deeper and wider bandgap, similar to
the perfect PnC

o The bandgap moved slightly due to the change in the PnC
lattice
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17 PnC Y-Splitter Design

*A "Y" splitter waveguide was also designed and fabricated with oc = 0.1

•Lattice is changed from cubic to hexagonal in the splitting region

o Splitting angle is 30°

*Measured average transmission is about -2.86dB, which corresponds to
72% energy transmission
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18 1 Conclusions

*Well-confined waveguiding can be realized by mode engineering in PnCs

•Transmission as high as 90% in the bent waveguide was demonstrated

•Efficient power splitting was demonstrated in both "T" (180°) and "Y" (30°) splitters

•These designs offers a paradigm based on bulk acoustic waves (BAW) for the design of
next generation RF signal processing devices filters



•
'

•-•••
•  "' •

Demonstration of Waveguiding, Bends,
Splitters in Macro-Scale Phononic
Crystal Devices

Charles Reinke, cmreink@sandia.gov


