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2 | Motivation — Elastomeric Foams

*Elastomeric foams are commonly used in packaging and

are capable of absorbing significant quantities of energy ‘
. Crash Scenario
*Current models may be tedious/expensive to calibrate (~65 mph)
* Flex Foam Model* allows 9 constants and 14 user-
prescribed functions to be input

*Goal: Reduce number of calibration tests required to L

satisfactorily qualify a foam or generate a new, physically- ¥

motivated constitutive relation ,

Time: 0.0e+00 s Time: 0.0e+00 s

* Approach: Identify microstructural descriptors besides Eqv. Plastic Strain True Volume Strain

porosity that significantly affect the macroscopic u '0]2 OLO -3 -] u '0‘|5i'0'056

behavior by applying statistical analysis to full-field data
sets such as computed tomography (CT) and digital
image/volume correlation (DIC/DVC)

*SAND2018-2433 (available through OSTT)



Modulus (MPa)

Background — Polyurethane Foam Behavior

*Three distinct regions in compression
*Manufacturing process produces eccentric pores

*Transverse linear elastic moduli are 30-60% less

Results from 240 kg/m?3 (15 lb/ft3) foam
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4 | Background — Spatial Statistics in Mechanics

n-Point Probability Functions

Consider two phase material (foam)
Sn(X1, X2, . Xn) = (1(x)1(x2) ... [ (X))
Where I(x) = 1 in pore phase, 0 in solid phase.

The probability that n points at positions X,
X,, ..., X, are found in the pore phase.

Torquato (2002) Annu. Rev. Mater. Res.

Predict permeability in Fontainbleau sandstone
Adler et al. (1990) Int. J. Multiph. Flow

“;.."!"-:K"

S1(x1) indicates porosity

S2(r) = (I (x)I(x + 1))

Probability that both end points of a
randomly located straight line are
contained in pore phase.

Determine anisotropy (and health) of tibia

Wald et al. (2007) Med. Phys.



5 I Qutline

Motivation and background

Experimental setup and results

Autocorrelation function and anisotropy

Cross-correlating microstructure to strain fluctuations

Conclusions



6 I Outline

Motivation and background

Experimental setup and results

Autocorrelation function and anisotropy

Cross-correlating microstructure to strain fluctuations

Conclusions



Polyurethane Foam
Density 240 kg/m3 (15 lb/ft3) I
Porosity 76-81%

Dimensions 12.9x12.9x13.6 mm3

7 | Experimental Setup

*Compression testing of
polyurethane foam

*In-situ CT acquisition
(Deben load frame)
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8 | Digital Volume Correlation
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*3-5 voxels/feature Virtual Strain
Gage (VSG)

* pore diameter: 200-500 um
*3-5 features/subset

*Correlated Solutions Vic-Volume

Resolution | Subset | Step | Filter | VSG _

123 ym3/vox 35vox 11vox 5 vox

1 mm3
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10 | Autocorrelation Function to Measure Deformation Induced Anisotropy

Moment
of inertia
tensor

®

N
I= ka((rk T)E-1, ®r1,),
k=1

where E i1s the identity tensor

E=¢ Q¢ +te,Q¢e, +e, e,

Autocorrelation function: a measure of how
correlated intensity is as a function of spatial

separation. No thresholding required!
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11 I Anisotropy Index
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*Minimum in a
corresponds to steep
increase in angle

*Yield has been found to
occur at ~4% in a
companion study

*Lock-up does not have

a defined beginning
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13 1 Distance Transform
Binary

Grayscl H (threshold)

*Operation that transforms a binary image into a similar image, X

but where the pixel values now represent the distance to the
closest boundary

*The pore phase distance transform shows a representation of
how far a point is from the solid polymer matrix

*A solid phase distance transform 1s accomplished in a similar
manner

Original grayscale scan Pore phase distance transform
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Cross-correlation between microstructure and DVC strains

Original grayscale scan Pore phase distance transform Solid phase distance transform £, strains

.

Cross-correlation between two fields I, and I, C(r) _ { I (ZX + I‘) I (X»
Where:
;I 1 (X) — ( f — E} j o [ 1s either pore or solid phase

distance transform

Ir(x) = (€z2: — €2

B s s B
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Cross-correlation between microstructure and DVC strains
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16 I Cross-correlation between microstructure and DVC strains

Solid phase distance transform and e_zz strains:
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Conclusions

*Generated full field microstructural data using X-ray CT
and volumetric strain information with DVC
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*Quantified the compression induced anisotropy using
the autocorrelation function

*Applied the cross-correlation function between the
distance transform and the DVC strains

* Observed large strains in the vicinity of large pores and less
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20 | Stress Relaxation

Stress-time Profile of 15 pcf Compression Experiment
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21 I Stress Relaxation (cont.)

Pristine Deben Sample Compared with
Pristine Samples Hydraulic Load Frame
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Additional DVC Steps and X-ray Bay Image

Varian
PaxScan2520DX

Xray Worx 250kV

Step 1

CT Acquisition Settings

Resolution 123 um3/vox
Voltage 180 kV
Current 72 pA

Power 13 W
Magnification 10.6
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Spatial correlations: how material is spatially distributed

Two-point correlation function:

So(r) = (I{x)I(x + r))

where I (r) =1 in pore phase, 0 in solid phase

Fast to compute via 3D FFTs:

F(k) = FFT((r))
$ilr) = FFT(F(l) F*(K))

\
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Intuition:
* Characteristic length scale
* Anisotropy

Thresh = 100  Thresh = 10000 Thresh = 11000 Thresh = 13000

Thresh = 15000 Thresh = 17000 Thresh = 20000 Thresh = 25000
Porosity = 0.758 Porosity = 0.774 Porosity = 0.796 Porosity = 0.832
. W " F . F .

More importantly: a complete, objective description

of microstructure
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Individual Pore Segmentations

Reconstructed image was thresholded

Result similar to anisotropy index

Eccentricity Comparision
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25 | Level set plot and all moment of inertia

Anisotropy

(I(x+1)I(x))—I*(x)

2
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ACF(r) =

[: CT greyscale intensity
(): denotes spatial average (i.e. over all locations X)
~ (overbar): mean

2

o-: variance

No thresholding required
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26 I Background — Spatial Statistics from Full-Field Data

Photograph of Fontainbleau sandstone
Predict permeability based on spatial statistics
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Digitally generated grain
structure. Ability to
recreate structure from
statistical values.
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MRI of tibia;
Determine
anisotropy (and
health) of bone
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27 | Autocorrelation Function to Measure Deformation Induced Anisotropy
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