
PRESENTED BY

Robert Waymel

COAUTHORS

S.L.B. Kramer, D.S. Bolintineanu, E.C. Quintana, and K.N. Long

SEM Annual Conference — Reno, NV — June 6, 2019

Q0RD
LABORATORY DIRECTEO
RESEARCH S DEVROPIRENT

Supported by the Laboratory Directed
Research and Development program at Sandia
National Laboratories, a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAN D201 9 -####C

SAND2019-6212C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 I Motivation — Elastomeric Foams

Elastomeric foams are commonly used in packaging and
are capable of absorbing significant quantities of energy

•Current models may be tedious/expensive to calibrate
- Flex Foam Model* allows 9 constants and 14 user-
prescribed functions to be input

•Goal: Reduce number of calibration tests required to
satisfactorily qualify a foam or generate a new, physically-
motivated constitutive relation

4 Approach: Identify microstructural descriptors besides
porosity that significantly affect the macroscopic
behavior by applying statistical analysis to full-field data
sets such as computed tomography (CT) and digital
image/volume correlation (DIC/DVC)

*SAND2018-2433 (available through OSTI)
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3 Background — Polyurethane Foam Behavior

•Three distinct regions in compression

*Manufacturing process produces eccentric pores

•Transverse linear elastic moduli are 30-60% less

Results from 240 kg/m3 (15 lb/ft3) foam
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4 I Background — Spatial Statistics in Mechanics

n-Point Probability Functions 

Consider two phase material (foam)

Sn (x1, x2, ... x n) E (I (x1)I (x2) ... I (x 0)

Where I(x) = 1 in pore phase, 0 in solid phase.

The probability that n points at positions xl,
x2, ..., xn are found in the pore phase.

Torquato (2002) Annu. Rev. Mater. Res.

Predict permeability in Fontainbleau sandstone
Adler et al. (1990) Int. J. Multiph. Flow

S1 (X1 ) indicates porosity

S2 (r) = (I (x)I (x + r))

Probability that both end points of a
randomly located straight line are
contained in pore phase.

Determine anisotropy (and health) of tibia
Wald et al. (2007) Med. Phys.
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7 Experimental Setup

Compression testing of
polyurethane foam

In-situ CT acquisition
(Deben load frame)

•Resolution = 123 µm3/vox
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8 Digital Volume Correlation

12.9 mm
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*3-5 voxels/feature

• pore diameter: 200-500 lArri

3-5 features/subset
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10 Autocorrelation Function to Measure Deformation Induced Anisotropy
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where E is the identity tensor
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I: grayscale intensity Average
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11 Anisotropy Index

a =1
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13 I Distance Transform

'Operation that transforms a binary image into a similar image,
but where the pixel values now represent the distance to the
closest boundary

-The pore phase distance transform shows a representation of
how far a point is from the solid polymer matrix

*A solid phase distance transform is accomplished in a similar
manner

Original grayscale scan
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14 Cross-correlation between microstructure and DVC strains

Original grayscale scan
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1 5 Cross-correlation between microstructure and DVC strains
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16 Cross-correlation between microstructure and DVC strains

Thicker struts 4 more
positive (less negative)
strains
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18 Conclusions

Generated full field microstructural data using X-ray CT
and volumetric strain information with DVC
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19 I Extra Slides



2 0 Stress Relaxation

Stress-time Profile of 15 pcf Compression Experiment
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21 Stress Relaxation (cont.)
Pristine Deben Sample Compared with
Pristine Samples Hydraulic Load Frame
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22 Additional DVC Steps and X-ray Bay Image

Varian
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23 I Spatial correlations: how material is spatially distributed

• Two-point correlation function: .92(r)  (11x),I(x + r))

where I (r) = 1 in pore phase, 0 in solid phase

• Fast to compute via 3D FFTs: F (10 = FFT(I(r))

S2(r) P l(F(k) F* (k))

Cellular silicone

Polyurethane

Expancel

BCC
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•
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Intuition:

• Characteristic length scale

• Anisotropy

Thresh = 100 Thresh = 10000 Thresh = 11000 Thresh = 13000
Porosity = 0.605 Porosity = 0.716 Porosity = 0.725

Thresh = 15000 Thresh = 17000 Thresh = 20000 Thresh = 25000
Porosity = 0.758 Porosity = 0.774 Porosity = 0.796 Porosity = 0.832

More importantly: a complete, objective description

of microstructure

Porosity = 0.742



24 Individual Pore Segmentations

Reconstructed image was thresholded

Result similar to anisotropy index
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2 5 1 Level set plot and all moment of inertia components /11 = Emk +
k=1
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26 Background — Spatial Statistics from Full-Field Data

Photograph of Fontainbleau sandstone
Predict permeability based on spatial statistics

Adler et al. (1990) Int. J. Multiph. Flow

Digitally generated grain
structure. Ability to
recreate structure from
statistical values.

MRI of tibia;
Determine
anisotropy (and
health) of bone

Wald et al. (2007)
Med. Phys.
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2 7 Autocorrelation Function to Measure Deformation Induced Anisotropy

NJ
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where E is the identity tensor

E = el 0 el + e2 0 e2 + e3 0 e3

Autocorrelation function: a measure of how
correlated intensity is as a function of spatial
separation

ACF (r) =
KI (x + r)I(x)) - I2 (x)
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I. CT greyscale intensity

(): denotes spatial average (i.e. over all locations x)
(overbar): mean

62: variance

No thresholding required

a =1  VA; ± 32


