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CONTEXT

" Increased demand for optimization and UQ
* Increasing interest in advanced materials/manufacturing

= Recent advances in transport community with adjoint-based sensitivities

Opportunity: use adjoint-based transport methods to efficiently determine
parameter sensitivities, which will be used to drive design optimization and/or UQ
calculations in high-dimensional spaces.

* Enable consideration of larger design/trade space

= Provide greater insight to designers
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We are interested in satellite electron/proton shielding applications. Mass is at a
premium for space missions due to launch costs and/or mass limits. We want to
perform design optimization to achieve the required level of protection with the
minimum amount of mass. For example, we want to be able to transform the initial
design below to a mass-saving one while still meeting the same requirements. This
may entail material and/or geometric changes.

Components Structure

/

Shields

Initial design Final design




s 1 SIMULATION-BASED DESIGN EXPLORATION AND ANALYSIS
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BASIC CLASSES OF OPTIMIZATION APPROACHES

Gradient Descent

* Looks for improvement
based on derivative

* Requires analytic or
numerical derivatives (zore

soon)

* Ffficient/scalable for
smooth problems

* Converges to local extreme

— rosenbrock
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Derivative-Free Local

* Sampling with bias/rules
toward improvement

* Requires only function

values

* Good for noisy, unreliable or
expensive derivatives

* Converges to local extreme

" rosenbrock
| ® iteration history|—

~

€
Derivative-Free GlobaﬁDRD

* Broad exploration with
selective exploitation

* Requires only function
values

* Typically computationally
intenstve
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[ . ,/o. [ b
~—
=
= .
Y ®
L ]
L ] /
%/
L ]
'y
ee // /¢
L ] ) 4
®
o
4 | rosenbroc
o Sl o P
N ® initial pop




7

GRADIENTS FOR DERIVATIVE-BASED METHODS

Akin to Newton’s method for root-finding,
minimize the objective by going “downhill” based
on the gradient of the objective function:

of (x) af(x)}
-

oo

X, Ox

Most simulations don’t calculate derivatives

Dakota approximates gradients (and Hessians 1f

first-order derivative
flx)  approximations
A

backward — =

needed) by running the simulation at x £Ax as -

needed

: : —>X

First-order Forward Difference

Second-order Central Difference

o _f+An)-f()

of Nf(x+Ax) — f(x — Ax)

fd _step size 1.0e-3

ox Ax dx 2Ax
responses responses
numerical gradients numerical gradients
forward central

fd _step size 1.0e-3




s I ADJOINT-ENABLED OPTIMIZATION
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"  (Goal: minimize mass subject to dose

constraint, given design variables x: min f(x) = mass(p, t)
)
" location 7 of surface point /

s.t. g(x) = dose(p,t) < dpgy

" fraction p,, of material  in layer ;

"  We find local minima with Newton-like gradient-based methods; loosely

X1 = X — [HF QO] f (x) f(x)

where explicit adjoints afﬂgx:iate L.
finite differencing for V, f (x)

global minimum

X

V\\I(?cal

" Solve the constrained problem with sequential minima X
quadratic programming (NPSOL) and f{x), g(x) adjoints

" Address non-smoothness or multiple minima with multi-start local optimization, trust ‘
region surrogate-based optimization instead of pattern search or genetic algorithms...



9 I THEORY: PROBLEM
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Problem:

Q-VY+op = de fans(r,Q’—>Q,E’—>E)1,b(r,ﬂ’,E’)+q,r€D

E' 41T
Y =yY,(r,QE),{r edD|Q -n <0}

Rsz drbf dEi dQy(r,Q, E)qT(r, E)

Simplifications/definitions:

LY+ CyY =5 +q

f dr! dE i dQab = {(a, b)

D




THEORY: SENSITIVITIES

Lagrangian:

= <¢rq+>_<lp+rL¢+Clp_S¢_q>

Derivatives (sensitivities):

ar az: aL oY
dp ap 61/) dp

2 is any uncertain and/or design parameter. In general it is a vector.




11 ‘ THEORY: SENSITIVITIES

Substituting in the expression for the Lagrangian and carrying out several steps

yields:

dqt dq G,
<%> f <‘”’%> - <‘” (‘ bre ‘”M

o .. 0
The derivatives of output quantities (e.g. %) are unknown.
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THEORY: SENSITIVITIES

If the following equations are satisfied:

(L+C—-S)y =q (forward Boltzmann problem)

(Lt +CcT =Syt =47 (adjoint Boltzmannproblem)

dar
then — reduces to :
dp

dL

_|[., 9"
dp ~ |\" op

dR

o3 fgc-2

dp

The sensitivities of any R to any p are obtained by various inner products involving
the forward solution 1, the adjoint solution YT, and derivatives of input (i.c.
known) quantities.




13 ‘ WHY WE CARE ABOUT ADJOINT SENSITIVITIES

Solver behavior for some 1D optimization runs

Design Transport solves for Transport solves for
Problem o . o
Parameters finite differences adjoint approach
1 8 8

1

2 1 4 4
3 2 33 22
4 3 20 10
5] 5 84 44
6 6 133 34
7 12 377 60
8 92 = 26
9 184 = 30

Adjoint-based approach scales much better than finite-
difference approach for large number of parameters (2 < p+1)
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APPLICATION OF SENSITIVITIES: 2D “RADIAL” GEOMETRIES
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We want to know the effect of geometric changes in satellite electron/proton
shields. We postulate a variable-thickness shield surrounding an electronic
component or package (a portion of the geometry 1s depicted below). The shield
surface is parametrized by some number of “control” points, each lying some
distance along unique rays emanating from a “central’” point (perhaps within the
package to be protected). The points are connected by line segments to define the
surface. We need to drive the sensitivity of the dose to the component to changes
in the location of each point.




15 1 OUTLINE OF SENSITIVITY DERIVATION
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We examine the region between two
adjacent control points on both sides of the
interface (bottom figure). We subdivide the
region into several other subregions defined
by equidistant points between the control
points. After writing various equations for
each subregion, we will examine the limit as
the number of subregions increases to

infinity.




16 I EXAMPLE: COLLISION TERM
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The collision term for one region is given by:

CY = Z[H(x, - x,pln) - H(x, - x,pn)] [H (y, - y,pn) —H (y, - y,pn+1)] Z pml(o-t,g,m,l - a&gg,m,l)l/)g
m

n
A [HE =) —H =2 [ =y, ) =H( =¥, )] D e (Geamr = 05.g0mr)bg
m

n

The derivative of the collision term with respect to movement of the bottom
control point is:

:ch = Z S(x’ — x’pn)Vnc,bﬁn [H (y’ = y’pn) —H (y' — y’pn+1)] ; Dmi (Ut,g,m,z — 05,gg,m,l)

n

- Z 5(3&" - x,pn)Vnc,bﬁn [H (y, - y,pn) —H (y, - y,pn+1)] z Pmr (at,g,m,r - Ud,gg,m,r)
m

n




17 ‘ EXAMPLE: COLLISION TERM (CONTINUED)
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The portion of the response sensitivity related to the collision term 1s given by:
OR aC
4t = ,
== ,<ahb)¢g >
= — dV dleT(T‘ .Q,) S(X, — x' )V e H [
g\ pn/)Vnc,bPn y =YV,
|4 AT
g n
= (y, N y,Pn+1)] z Pmi (Ut,g,m,l o 0-5'9.9:"1,1)1/)9 (T, ‘Q)
m
+ | av Aol Q) Y 8(x' = x'p Vnenbn |H (¥ =¥’
g\ pn )Y nc,bPn Yy =YV,
v g 4n n

—H (y, - y,pn+1)] z me‘ (O-t:g:mﬂ" _ Ué‘,gg,m,r)wg (T', Q)
m




18 ‘ EXAMPLE: COLLISION TERM (CONTINUED)
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We take the limit as the number of subregions goes to infinity to obtain the portion
of the response sensitivity related to the collision term:

I OR

1m —
N-o dh b
= - Z Z Pmi (Ut,g,m,l - US,gg,m,l) daq dsi’ - ﬁVnc,bﬁnlp; (s, Q)Ebg (s, Q)
g m 41T aDl

+ z z Pmr (Ut,g,m,r - US,gg,m,r) daq f dsi’ - 77ZVnc,bﬁrﬂ/{;r (s, -Q)Ebg (s,Q)
g m 4T 0D,

Analogous expressions are derived for the scattering and adjoint source terms to
obtain the full sensitivity of the response to movement of the control point for one
region. Movement of a point may involve more than one region.




19 1 OPTIMIZATION

)
parameters DAKOTA objectives, constraints
NPSOL

Python Sceptre Fwd/Adj

Python
Postproc

Preproc Transport Fluxes

RadSens
Postproc

= Dakota NPSOL optimization drives the process
= Python tools translate between Dakota and Sceptre
" Sceptre deterministic transport produces forward and adjoint angular flux fields

" Material and geometric sensitivities are post-processed from these fields




APPLICATION: ELECTRON AND/OR PROTON SATELLITE
20 1 SHIELDING
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We are interested in satellite shielding applications. The problems we will study are:
= 2000 km circular equatorial orbits (arbitrarily chosen to demonstrate optimization)

= Proton and/or electron environments as defined by the AP8 and AE8 models in
Spenvis

= Various components to be protected to various levels

= Multiple shielding regions of arbitrary geometry and/or materials
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APPLICATION: ELECTRON AND/OR PROTON SATELLITE
SHIELDING

Initial design

We want to protect components in a satellite. The electron/proton flux is isotropic, but
asymmetric aluminum structure produces an asymmetric internal environment. The thick
region on the right 1s an approximation to the satellite structure. The region on the
bottom represents other instruments. There are four components in the corners, and a
larger fifth component in the middle. Nominal shields are in blue. The location and
allowed movement of control points is represented by arrows.




REQUIREMENTS: 100 KRAD/YR AT CORNERS, 40 KRAD/YR AT

‘ EXAMPLE: PROTON SHIELDING WITH POLYETHYLENE
21 CENTER

<)
(The initial design is overdesigned and requites 225 g/cm) ED RD

Second design iteration (71 g/cm) Third design iteration (81 g/cm)

[

Fourth design iteration (81 g/cm) Final design: 82 g/cm




23 1 DESIGNS WITH OTHER DOSE CONSTRAINTS
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Center dose requirement: 30 krad/yr Center dose requirement: 20 krad/yr ‘

Final design: 174 g/cm Final design: 450 g/cm |



24 I DESIGNS WITH OTHER MATERIALS

Aluminum shields, 20 krad/yr at center Copper shields, 20 krad/yr at center
Final design: 357 g/cm Final design: 289 g/cm
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s 1 COMBINED MATERIAL AND GEOMETRY OPTIMIZATION

Requirement: 20 krad/yr at center

For this design we arbitrarily allowed for the use of polyethylene,
aluminum, copper, molybdenum, and/or tantalum

Final design: Polyethylene outer shield, copper inner shield, 226 g/cm




26 1 COMBINED PROTON/ELECTRON ENVIRONMENT

-

Requirement: 40 krad/yr at center

For this design we only allowed for the use of polyethylene

Final design: 97 g/cm
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CONCLUSIONS
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= Our previous work demonstrated our ability to compute geometric and material
sensitivities in 1D slab geometry and to incorporate them into satellite shield design
optimization

" In the current work we dertved sensitivities for parametrized 2D geometries and
incorporated them into our design optimization tools

" We have demonstrated the use of these tools for a variety of satellite problems:
* combined environments
* multiple materials

° numerous control points

" Future work:
* More combined environment studies with multiple materials
* 3D sensitivities/optimization

* Robust design




