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3 I CONTEXT

■ Increased demand for optimization and UQ

■ Increasing interest in advanced materials/manufacturing

■ Recent advances in transport community with adjoint-based sensitivities

Opportunity: use adjoint-based transport methods to efficiently determine
parameter sensitivities, which will be used to drive design optimization and/or UQ
calculations in high-dimensional spaces.

■ Enable consideration of larger design/trade space

Provide greater insight to designers



4 I END OBJECTIVE

We are interested in satellite electron/proton shielding applications. Mass is at a
premium for space missions due to launch costs and/or mass limits. We want to
perform design optimization to achieve the required level of protection with the
minimum amount of mass. For example, we want to be able to transform the initial
design below to a mass-saving one while still meeting the same requirements. This
may entail material and/or geometric changes.
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I5 SIMULATION-BASED DESIGN EXPLORATION AND ANALYSIS

• Use Dakota with Sceptre (deterministic

transport solver) to systematically ask what-if

questions: sensitivity, design, uncertainty

analyses

• Optimization: What component materials,
composite material fractions, and shield layer

geometries yield the lightest shield meeting

strength and dose requirements?

• Uncertainty Quantification (UQ): Given

variability in manufacturing (mixtures, layer

geometry) and state of knowledge (transport

cross sections), with what probability will a

proposed design meet dose requirements?
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6 I BASIC CLASSES OF OPTIMIZATION APPROACHES
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7 I GRADIENTS FOR DERIVATIVE-BASED METHODS

• Akin to Newton's method for root-finding,

minimize the objective by going "downhill" based

on the gradient of the objective function:

Of (x) Of (x)1
Vf,(x) =[

ax, x,

• Most simulations don't calculate derivatives

• Dakota approximates gradients (and Hessians if

needed) by running the simulation at xi-Ax as
needed

First-order Forward Difference

af N f (x + Ax) — f (x) 

responses
numerical_gradients
forward
fd step_size 1.0e-3

first-order derivative
f(x) approximations
A

central

backward ,
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Second-order Central Difference

a f f (x + Ax) — f (x — Ax)

a x 2Ax

responses
numerical_gradients
central
fd step_size 1.0e-3



8 I ADJOINT-ENABLED OPTIMIZATION

• Goal: minimize mass subject to dose

constraint, given design variables x:

• location t of surface point j

• fractionp m of material m in layer j

'AP., I
L•DRD

min f (x) = mass(p,t)

s.t. g (x) = dose (p , t) dmax

• We find local minima with Newton-like gradient-based methods; loosely

f(x)
xic-F1 = xk — [H f (x)]-1Vxf (x)

where explicit adj oints 1<iate
finite differencing for Vxf (x)

• Solve the constrained problem with sequential

quadratic programming (NPSOL) and f(x), g(x) adjoints

global minimum

minima

• Address non-smoothness or multiple minima with multi-start local optimization, trust

region surrogate-based optimization instead of pattern search or genetic algorithms...



9 I THEORY: PROBLEM

Problem:

+ 0-4 f dE f dflas
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10 THEORY: SENSITIVITIES

Lagrangian:

L = Op, qt) — W , 1,11) + CO — SO — q )

Derivatives (sensitivities):

dL aL aL dlp
= +

dp dp alp ap

p is any uncertain and/or design parameter. In general it is a vector.



11 THEORY: SENSITIVITIES

Substituting in the expression for the Lagrangian and carrying out several steps

yields:

+

(

t 
a q

' ap

a

a 0
The derivatives of output quantities (e.g. —) are unknown.

ap



12 THEORY: SENSITIVITIES

If the following equations are satisfied:

(L + C — s)ip = q (forward Boltzmann problem)

(Lt + Ct —st)ot = qt (adjoint Boltzmannproblem)

dL ,
then —

dp 
reauces to :

dL a qt . a 1 ( a dR
cv, = [(.1p, ,) + (ip-r, — ipt,W(L+ c —s))0)1 = cv,

The sensitivities of any R to anÿp are obtained by various inner products involving

the forward solution 0, the adjoint solution 01-, and derivatives of input (i.e.
known) quantities.



13 WHY WE CARE ABOUT ADJOINT SENSITIVITIES

Solver behavior for some 1D optimization runs

Problem
Design

Parameters
Transport solves for
finite differences

Transport solves for
adjoint approach

1 1 8 8

2 1 4 4

3 2 33 22

4 3 20 10

5 5 84 44

6 6 133 34

7 12 377 60

8 92 26

9 184 30

Adjoint-based approach scales much better than finite-
difference approach for large number of parameters (2 < p+1)



14 APPLICATION OF SENSITIVITIES: 2D "RADIAL' GEOMETRIES

We want to know the effect of geometric changes in satellite electron/proton
shields. We postulate a variable-thickness shield surrounding an electronic
component or package (a portion of the geometry is depicted below). The shield
surface is parametrized by some number of "control" points, each lying some
distance along unique rays emanating from a "central" point (perhaps within the
package to be protected). The points are connected by line segments to define the
surface. We need to drive the sensitivity of the dose to the component to changes
in the location of each point.



1 5 OUTLINE OF SENSITIVITY DERIVATION
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We examine the region between two
adjacent control points on both sides of the
interface (bottom figure). We subdivide the
region into several other subregions defined
by equidistant points between the control
points. After writing various equations for
each subregion, we will examine the limit as
the number of subregions increases to
infinity.



1 6 EXAMPLE: COLLISION TERM

The collision term for one region is given by:

CO = 1[H (X"' — pin) — 11(x' — pii)][H (y'

+1[H(X' — pn) — 11(x' — prn)] [H (y' —

pn)

Y'Pn)

H 01'

— H 
01' P +1)1

1Pml(at,g,m,1

m

m

Pmr (at,g,m,r

c9.%,.. I
WRD 

— ,g g,m,1)11) g

as,gg,m,r)1Pg

The derivative of the collision term with respect to movement of the bottom
control point is:

ac
= Iä(x' — pn)Vnc,bfin [H (y' y'pn) — H (y' —a hb

—18(X"' — pn)Vnc,bfin [11 (y' y'pn) — H (y' —
n

Prril(at,g,m,1 as,gg,m,l)

m

pn+1)11Pmr(at,g,m,r as,gg,m,r)



17 EXAMPLE: COLLISION TERM (CONTINUED)

The portion of the response sensitivity related to the collision term is given by:

aR i ac\
ahb =-4,tg'ib);Pgf)

=— f dV fl IPlf d; (r, 11.) 1 15 (xf — xfpn)7nc,brin [H 07'y 
47r

9 n

— H (Yf — Yf pnillPna(ut,g,m,1 — 66 ,gg,m,l)Og (r) 11)
m

+ f dV f dn .1 I) 1g - 0-, .0.) 16(x ' — ,Xfpn)Vnc,bp; [H 07'v
47rg n

— II (Yf — Yfpn+1)1 1 Pmr(Ut,g,m,r — 66,99,m,r)11)g
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18 EXAMPLE: COLLISION TERM (CONTINUED)

We take the limit as the number of subregions goes to infinity to obtain the portion
of the response sensitivity related to the collision term:

ar?
lim ,,N—>co onb

= —11Pmi(at,g,m,1 — 66,gg,m,l)
g m

+11Pmr(at,g,m,r — 66,gg,m,r)

g m

f dfl f dsi7 • FiV fi VA 0)-th ( 0)nc,b r- n g S,--J srgv9)..., j

47r api

f dfl f dsi7 • FiVnc,b15n0; C 9 ) MO g C s , SI)
4rc aDr

Analogous expressions are derived for the scattering and adjoint source terms to
obtain the full sensitivity of the response to movement of the control point for one
region. Movement of a point may involve more than one region.



1 9 OPTIMIZATION

Python
Preproc

parameters

Sceptre
Transport

DAKOTA
NPSOL

Fwd/Adj
Fluxes

objectives, constraints

RadSens
Postproc

Python
Postproc

• Dakota NPSOL optimization drives the process

• Python tools translate between Dakota and Sceptre

• Sceptre deterministic transport produces forward and adjoint angular flux fields

• Material and geometric sensitivities are post-processed from these fields



APPLICATION: ELECTRON AND/OR PROTON SATELLITE
20 SHIELDING

We are interested in satellite shielding applications. The problems we will study are:

2000 km circular equatorial orbits (arbitrarily chosen to demonstrate optimization)

Proton and/or electron environments as defined by the AP8 and AE8 models in
Spenvis

■ Various components to be protected to various levels

■ Multiple shielding regions of arbitrary geometry and/or materials



APPLICATION: ELECTRON AND/OR PROTON SATELLITE
21  SHIELDING

Initial design

We want to protect components in a satellite. The electron/proton flux is isotropic, but
asymmetric aluminum structure produces an asymmetric internal environment. The thick
region on the right is an approximation to the satellite structure. The region on the
bottom represents other instruments. There are four components in the corners, and a
larger fifth component in the middle. Nominal shields are in blue. The location and
allowed movement of control points is represented by arrows.



EXAMPLE: PROTON SHIELDING WITH POLYETHYLENE
REQUIREMENTS: 100 KRAD/YR AT CORNERS, 40 KRAD/YR AT

22 CENTER

(The initial design is overdesigned and requires 225 g/cm)

Second design iteration (71 g/cm) Third design iteration (81 g/cm)

Fourth design iteration (81 g/cm) Final design: 82 g/cm



23 DESIGNS WITH OTHER DOSE CONSTRAINTS

Center dose requirement: 30 krad/yr

Final design: 174 g/cm

I
B-DRD

Center dose requirement: 20 krad/yr

Final design: 450 g/cm

1



24 DESIGNS WITH OTHER MATERIALS

•

0.091%.0.4 I

L•DRD

Aluminum shields, 20 krad/yr at center Copper shields, 20 krad/yr at center

Final design: 357 g/cm Final design: 289 g/cm

1



25 COMBINED MATERIAL AND GEOMETRY OPTIMIZATION

Requirement: 20 krad/yr at center

For this design we arbitrarily allowed for the use of polyethylene,
aluminum, copper, molybdenum, and/or tantalum

Final design: Polyethylene outer shield, copper inner shield, 226 g/cm



26 COMBINED PROTON/ELECTRON ENVIRONMENT

Requirement: 40 krad/yr at center

For this design we only allowed for the use of polyethylene

Final design: 97 g/cm



27  CONCLUSIONS

• Our previous work demonstrated our ability to compute geometric and material
sensitivities in 1D slab geometry and to incorporate them into satellite shield design
optimization

• In the current work we derived sensitivities for parametrized 2D geometries and
incorporated them into our design optimization tools

• We have demonstrated the use of these tools for a variety of satellite problems:

• combined environments

• multiple materials

• numerous control points

• Future work:

• More combined environment studies with multiple materials

3D sensitivities/optimization

Robust design


