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What do we mean by "high fidelity"?
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High-fidelity a reproduction faithful to the original

For DER integration, we mean "accurately modeled," including:

1) Granular Distribution Grid Modeling
Phase identification

- Topology identification and parameter estimation

2) Detailed Locational Impact Analysis
O Locational hosting capacity
° Synthetic Cloud Fields

3) Long-term Timeseries Analysis
O Daily/seasonal variability in generation and impact to grid operations
O Rapid QSTS
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Granular Distribution
Grid Modeling

Phase identification

Topology identification and parameter estimation



Phase Identification
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Use Machine Learning on voltage profiles from AMI meters to cluster by phase.
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Phase Identification

May confirm utility model:
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Phase Identification

Or may correct model:

Utility Model
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Topology and Parameter Estimation

Use AMI voltage and power measurements to derive secondary system topology
and impedances.
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Topology and Parameter Estimation •
Topology and parameter estimation (DSPE) matched well with the (good) utility
secondary model.

Parameter/Topology Est. Utilit Secondary Model
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Topology and Parameter Estimation •
Topology and parameter estimation (DSPE) matched well with the (good) utility
secondary model, even for complicated topologies.

Parameter/Topology Est. Utility Secondary Model
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Topology and Parameter Estimation
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For bad or nonexistent utility secondary models (common), topology and
parameter estimation can be used to develop a high-fidelity secondary model.
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11 Result of Granular Modeling

Detailed and verified utility secondary model.

1



Detailed Locational Impact
Analysis

Locational hosting capacity

Synthetic Cloud Fields
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Locational Hosting Capacity

Concept —add more and more PV at a single node until it causes a problem —
voltage, line loading, or transformer loading. The largest amount of PV that does
not cause a problem is the locational hosting capacity.
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Locational Hosting Capacity

Can also apply to electric vehicles — for EVs, line loading, transformer loading, or
under voltage may be more common (EVs are essentially additional loads).
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Synthetic Cloud Fields

Modeling many PV interconnections on a feeder is difficult: usually only 1 (or no)
solar irradiance measurement available near a feeder.

Challenge

Substation

L7C/VREG
Switching Capacitor

• PV Location

Solution: synthetic cloud fields

Lave, Matthew Samuel, Matthew J. Reno, and Robert Joseph Broderick. Creation and
Value of Synthetic High-Frequency Solar Simulations for Distribution System QSTS
Simulations. No. SAND2017-5646C.
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Synthetic Cloud Fields

Synthetic PV used as input to OpenDSS to find voltage profile.

•



Synthetic PV used as input to OpenDSS to find voltage profile.



Long-Term Timeseries Analysis

Daily/seasonal variability in generation and impact
to grid operations

Rapid QSTS
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Variability in Generation and impact to Distribution Grid

Many DERs have variable output that is not controlled by the grid operator.

Wind

Solar
2

0

3
2
1
0

3
2 -

2

0 

3  
2 -

0 

3 
2
1

2 0

3 38 2
1
0

3
2
1
0

3
2 -

1T1

11:1\
111
7

111, fi 14, dR1
2 3 4 5 6 7

2

1 2 3 4 5

5

6 7

7

0

3
2

0

4 5 6

3  
2 -

ABQ, NM:
PSEL

ABQ. NM:
Mesa

Boise,
ID

Lanai,
HI

Las Vegas,
NV

Livermore,
CA

Mayaguez,
PR

Oahu,
HI

- Sacramento,
CA

2 3 4 5 6 7

3 4 5

day of week

7

San Diego,
CA

790

48°

1

xon

Each Day is a different color. Wind proPle pattern En AO 2007

2 5 4 5 6 7 It 9 10 11 12 13 14 I S 16 17 10 19. 2C 21 22 Ll 24 .

Hag

EVs

El
ec

tr
ic

al
 L
o
a
d
,
 k
W
 

100

90

80

70

60

50

40

30

20

10

Typical Week(uncontrolled) for 100 PEVs

- Horne-LI

- 11..4-L2



Variability in Generation and impact to Distribution Grid
21

Timeseries analysis shows temporal impacts (e.g., voltage regulator tap change
operations), and allows for full consideration of daily/seasonal trends.
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Rapid QSTS

Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year
distribution grid simulations on a desktop computer.
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Rapid QSTS

Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year
distribution grid simulations on a desktop computer.
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Concluding thoughts
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• Historic methods (snapshot, no secondary, limited measurements)
are insufficient.

• AMI data and other grid edge sensing provide opportunities for
deriving and validating system models.

• Developments in modeling methods are simultaneously enabling
more accurate distribution grid modeling and faster simulations.

• Upcoming: "QSTS hosting capacity" will simultaneously consider
locational and temporal impacts of DER integration.


