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What do we mean by “high fidelity”? | | I

High-fidelity — a reproduction faithful to the original

For DER integration, we mean ‘“accurately modeled,” including:

1) Granular Distribution Grid Modeling

Phase identification

Topology identification and parameter estimation

2) Detailed Locational Impact Analysis

Locational hosting capacity
Synthetic Cloud Fields I

3) Long-term Timeseries Analysis

Daily/seasonal variability in generation and impact to grid operations

Rapid QSTS



Granular Distribution
Grid Modeling

Phase identification

Topology identification and parameter estimation



Phase ldentification .

Use Machine Learning on voltage profiles from AMI meters to cluster by phase.
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May confirm utility model:
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Phase ldentification . I

Or may correct model:
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Topology and Parameter Estimation || I

Use AMI voltage and power measurements to derive secondary system topology |
and impedances.
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Topology and Parameter Estimation || I

Topology and parameter estimation (DSPE) matched well with the (good) utility I
secondary model.
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Topology and Parameter Estimation || I

Topology and parameter estimation (DSPE) matched well with the (good) utility |

secondary model, even for complicated topologies.

Parameter/Topology Est. Utility Secondary Model
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Topology and Parameter Estimation
10

For bad or nonexistent utility secondary models (common), topology and

parameter estimation can be used to develop a high-fidelity secondary model.

Common assumption
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11 | Result of Granular Modeling

Detailed and verified utility secondary model.

3-phase
primary

N

Ny

- e

o BISE
w 9

<

.&‘/",y FS | ne'iﬁy_ as|



Detailed Locational Impact
Analysis

Locational hosting capacity
Synthetic Cloud Fields
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Locational Hosting Capacity | | I

Concept —add more and more PV at a single node until it causes a problem —
voltage, line loading, or transformer loading. The largest amount of PV that does I
not cause a problem is the locational hosting capacity.
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Locational Hosting Capacity

. _

Can also apply to electric vehicles — for EVs, line loading, transformer loading, or I
under voltage may be more common (EVs are essentially additional loads).
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Locational Hosting Capacity
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Can be applied to facilitate interconnection requests across a feeder. —
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Modeling many PV interconnections on a feeder is difficult: usually only 1 (or no)
solar irradiance measurement available near a feedetr.
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Synthetic Cloud Fields || I



Synthetic Cloud Fields -
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Synthetic PV used as input to OpenDSS to find voltage profile.
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Synthetic Cloud Fields

Synthetlc PV used as 1nput to OpenDSS to find voltage profile.

"y WA 20104)40 128 38 g U9 G

—
»

P

- Y L - v o ! \
, g Tt B o 4
: X3 @ # -
Er X . - &
5o * : s :;@, e

G ¢ Ao Tged

o o R
’( S ! Image ©2018 TeraMelncs » lGooéTe Earth
| | }A' | A d 2 &

g ‘;\»ﬂ.“



Long-Term Timeseries Analysis

Daily/seasonal variability in generation and impact
to grid operations

Rapid QSTS
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Variability in Generation and Impact to Distribution Grid | | I

Many DERSs have variable output that is not controlled by the grid operator. I
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Variability in Generation and Impact to Distribution Grid
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Timeseries analysis shows temporal impacts (e.g., voltage regulator tap change
operations), and allows for full consideration of daily/seasonal trends.

power through
voltage regulator
[MW]

c
o
=
w
o
=9
_
o
=
o
=
)]
o
=

cumulative
tap operations

Oahu, HI

12 24 36 48 60 72 B4

no PV
PV — Dahu 3MW

cumulative
tap operations

12 24 36 48 60 72 B84 96 108 120 132 144 156 168
hour

power through
voltage regulator

regulator position

[MW]

Sacramento, CA

1]

12 24 36 48 60 72 84 96 108 120 132 144 156 168
hour

Lave, Matthew, Matthew J. Reno, and Robert J.
Broderick. "Characterizing local high-frequency
solar variability and its impact to distribution
studies." Solar Energy 118 (2015): 327-337.

URL:



Rapid QSTS
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Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year
distribution grid simulations on a desktop computer.

Time taken by QSTS:
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Reno, Matthew J. Rapid QSTS Simulations for
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of Distributed PV. No. SAND2018-3899C.
URL:



Rapid QSTS . I
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Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year I
distribution grid simulations on a desktop computer.
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Concluding thoughts | | I

Historic methods (snapshot, no secondary, limited measurements)
are insufficient.

AMI data and other grid edge sensing provide opportunities for
deriving and validating system models.

Developments in modeling methods are simultaneously enabling
more accurate distribution grid modeling and faster simulations.

Upcoming: “QSTS hosting capacity” will simultaneously consider
locational and temporal impacts of DER integration.



