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Program Overview

@ Past work under BES GPCP

@ Detailed kinetic modeling and analysis of hydrocarbon flames

@ Chemical model reduction with Computational Singular
Perturbation (CSP) methods

@ Uncertainty quantification in chemical kinetic models

@ Estimation of uncertain kinetic rate constants with missing data

@ Present work

@ Stochastic chemical systems
@ Bayesian optimal experimental design

@ Today’s talk focuses on stochastic chemical systems
@ The chemical Langevin equation (CLE)
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Motivation

The chemical master equation (CME) governs the evolution of
chemical systems at molecular scales

@ Discrete Markov system - integer valued molecular counts
The Chemical Langevin Equation (CLE) is good path-wise

approximation for the CME when the # of molecules of each species

in the control volume is large enough - continuous Markov system
(Gillespie JChemPhs 2000,Hildebrand & Mikhailov |PhysChem 1996)

The CLE is relevant when the number of molecules of each species is
small enough so that stochastic effects are non-negligible
- macroscale deterministic models are inadequate
Relevant applications:
o catalysis
@ e.g. noise-induced transitions bet. bistable states - CO:Pt
@ biochemistry
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Stochastic Chemical System Formulation

@ Consider a chemical system

@ with Nspecies §;,+,8y, and Rreactions Ry, ..., R .
@ spatially uniform, fixed volume, constant temperature

@ X,(t): # 8, molecules, timet,and: X, := (X, (t), -, X ()T
@ Chemical Langevin equation (CLE)

R
Z ZpJ t)dt"'ZVji pj(Xt>de(t>7 t=1,-,N
=1

@ v, is the change in X; caused by one %, reaction
° ,oJ 1s the propensity functlon for reactlon R;
e W,(t) are statistically independent Brownlan motions

We can write the CLE, for convenience, as

|4, = J(X)d+ T 0,(X e, (0) |
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SDE Time Integration

@ The time integration of the CLE can employ a range of available time
integration schemes for stochastic differential equations (SDEs)

@ Consider the Ito SDE
dXt = f(Xt)dt =+ Q(Xt)th
@ Time integration

t T
Xt = Xto + / f(Xs)dS + / g(Xs)dWs
to t

0

o Euler-Maruyama (EM) - explicit, order 1 weak convergence
¥, +1 = Yn + fnhn + gn\/EnN’rw h’n = tn+1 - tn’ YO = Xto

n

@ EM s the simplest explicit SDE time integration
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SDE Stiffness

@ An SDE is stiff when it exhibits a large range of time scales
@ A chemical system with very slow/fast reactions results in a stiff CLE

@ Stiffness results in challenges for explicit SDE time integrators

@ Stability requires time steps smaller than the fastest time scale
@ However, for accurate time integration, ideally, the optimal time
step choice is dictated by the active time scale

@ One remedy is to use implicit time integration, but can we do better
with explicit constructions?

@ This has been done for ODEs using Computational Singular

Perturbation (CSP
( ) Valorani & Goussis, JCP, 2001

@ We would like to extend this to SDEs, specifically to the CLE
- Utility for both time integration and analysis
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CSP Basics Harvey Lam, Dimitris Goussis, 1980s - present

@ Autonomous stiff ODE system z=g(x), x e RN
o Define basis vectors a, (), ..., a (), row vectors b*(z), ..., b™ (z)

- withb'a; = d;;
o Expand the RHS in this basis:  g(z) = 32 a,f’, with fi :=bi . g

fr T
: } = A(x) { : }
2 ™

AeRNN A = (% +b'J,)a; and J, = 9 is the Jacobian of g

d
whence; pri [

The ideal basis decouples fast and slow processes, i.e. diagonalizes A

e Eigenvectors of J, are an approximation of the ideal CSP basis
- Exact for a linear system, where db? /dt = 0, Vi
@ Decoupling allows time-scale-informed time integration
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CSP Illustration with a Model ODE system

t=0-10 t=0-10
1257 5 T : T T T ¥ T -] \Hll T IHHHI T VHI!H' T HHIH’ T \IHHI‘ T VIIHE
1~ -
075+ .
0.5 4
0.25 -
1 L n L " o Ll Ll TIEERTT 1 HHI\A 1 IIIHIIJ TN iy
O T 2 3 4 s 405001 6l00T - BoT 0T T 6006
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
X
. -y +
zH&vl/e i=g(z) = R
—x

(Davis and Skodje, ].Chem.Phys. 1999)

SNL Najm Comp 8/22



CSP Illustration with a Model ODE system

t=0.0001 t=10.0001
1257 5 T : T T T ¥ T -] \Hll T IHHHI T VHI!H' T HHIH’ T \IHHI‘ T VIIHE
1~ -
075+ .
0.5 -
0.25 -
1 L n L " o Ll Ll TIEERTT 1 HHI\A 1 IIIHIIJ TN iy
O T 2 3 4 s 405001 6l00T - BoT 0T T 6006
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
X
. -y +
zH&vl/e i=g(z) = R
—x

(Davis and Skodje, ].Chem.Phys. 1999)
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CSP Illustration with a Model ODE system

t=0.001 t=0.001
1257 5 T : T T T ¥ T -] \Hll T IHHHI T VHI!H' T HHIH’ T \IHHI‘ T VIIHE
1~ -
075+ .
0.5 -
0.25 -
1 L n L " o Ll Ll TIEERTT 1 HHI\A 1 IIIHIIJ TN iy
O T 2 3 4 s 405001 6l00T - BoT 0T T 6006
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
X
. -y +
zH&vl/e i=g(z) = R
—x

(Davis and Skodje, ].Chem.Phys. 1999)
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CSP Illustration with a Model ODE system

t=0.01 t=0.01
1257 5 T : T T T ¥ T -] \Hll T IHHHI T VHI!H' T HHIH’ T \IHHI‘ T VIIHE
1~ -
075+ .
0.5 4
0.25 -
1 L n L " o Ll Ll TIEERTT 1 HHI\A 1 IIIHIIJ TN iy
O T 2 3 4 s 405001 6l00T - BoT 0T T 6006
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
X
. -y +
zH&vl/e i=g(z) = R
—x

(Davis and Skodje, ].Chem.Phys. 1999)
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CSP Illustration with a Model ODE system

t=0.1 t=0.1
12sF — T T T 7 L0 B 1L AL AL/ AL B AL
1~ -
075 .
0.5 =
0.25 —
00 L |l L \2 I :\‘; L A\‘ N g »4001‘I(I)I|0011I H(I)\'I(ll)()ll L Hl(l)l.\IOl-l HHI(;\.I L IHHIJ] L1 ““I{OAO-OG
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
yx x
: =gt —
T [ﬂ&vzl/ez i=g(2) = T+2 ~ {T+ap
=

(Davis and Skodje, ].Chem.Phys. 1999)
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CSP Illustration with a Model ODE system

t=1 t=1
125 T = T 7 L0 B 1L AL L/ AL I AL
1~ -
075 .
0.5 =
0.25 —
00 L |l L \2 I :\‘; L A\‘ N g »4001‘I(I)I|0011I H(I)\'I(ll)()ll L Hl(l)l.\IOl-l HHI(;\.I L IHHIJ] L1 ““I{OAO-OG
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
YT x
: =gt —
T [ﬂ&vzl/ez i=g(2) = T+2 ~ {T+ap
=

(Davis and Skodje, ].Chem.Phys. 1999)
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CSP Illustration with a Model ODE system

t=10 t=10
1.25F g T i T T T P g | LLLL A LLLL B AL B R L IR AL IR
1~ -
075 .
0.5 4
0.25 —
|l L \2 I :\‘; L A\‘ N g »4001‘I(I)I|0011I H(I)\'I(ll)()ll L Hl(l)l.\IOl-l HHI(;\.I L IHHIJ] L1 ““I{OAO-OG
X time
Time evolution of the state Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f*,i = 1,2
yx x
: =gt —
T [ﬂ&vzl/ez i=g(2) = T+2 ~ {T+ap
=

(Davis and Skodje, ].Chem.Phys. 1999)
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Bkgd

CSP Decomposition and Time Integration

ODE: T =g(x), xRN
Evaluate eigensolution for Jacobian matrix ./, and sort the eigenmodes
AL AN with [A;| > [A; |
with time scales 7, = 1/|\;|and 7; < 7,

g Zal]”*a fLttayfM + ay M+ +ayfN

gfast"’o Gslow
Explicit integration in time
N

M thi ) )
g™t = g» +Z/ a,fidt + Z a,f'At
i=1 /t,

i=M+1

Amplitudes of fast exhausted modes decay exponentially, thus:

N

n+1_w +Zan ) nl_efAt/'r)_*_ Z a?f:LAt

i=M+1
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CSP-CLE

CLE Stiffness and Dynamical Response

@ A stiff CLE exhibits stochastic 3000——
manifolds

@ Basins of attraction defined by
partial mean-equilibration of fast
drift processes

@ Meaningful for drift processes
that are faster than diffusive
time-scales

Number of Molecules
@
(=]

@ Focus on eigenstructure of the drift A
term % 005

I .
0.1 0.15 0.2
time (sec)

@ Address decay and exhaustion of Michaelis-Menten CLE system

drift processes in the mean
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CSP-CLE

CSP Applled tO the CLE (Han, Valorani, Najm, ). Chem. Phys. 2019)

o CLE
Xopar =X + f(X dt+zgj

@ Introduce the CSP basis {«;, 8}, i = 1, o, N,with 8" - a; = 6,5, Vi
@ The (signed) mode amplitudes for the drift term are

¢(X) = B'(X) - f(X)

@ Using the stochastic chain rule, with some algebra, we have

[dg — A&dt + pdt + FdW(t)]

where
NxN _ (dBt ;
e Mar{g il , ’
N ) Prm
pER Zr L Br Zk =1 Zj,m:l VikVjtVmr 8x,0X, Pi

NxR
T € RVX r =N B,
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Linearization of the SDE for the Modes

@ We use this SDE, linearized, to motivate the use of the eigenvectors
of J; as CSP basis vectors, as done for the ODE case

@ A linearized analysis gives
d¢ = Agdt + TdW (1), with A;; = B'Jzax;

@ Choosing v, B as the right/left eigenvectors of J; diagonalizes A,
and decouples the time evolution of the mean modes

- for modes with eigenvalues with different real parts

@ For the nonlinear CLE, as opposed to a general SDE,

@ Magnitudes of components of ¢ are small relative to those of A
@ The use of the linearized approximation is viable
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Proposed CSP-CLE time integration strategy

@ Integrate the drift term using CSP - at every time step:
@ Evaluate eigendecomposition of J; = 0 f /0z, and sort them

ALy Ay with [A;| > [A; 4]
with time scales 7, = 1/|\;|and 7; < 7,4

N
f= Zalgl = algl o s aM§]V1+aM+1§M+1 b gyl OleN

i—1
v fi fast f slow

o l|dentify fast/slow subspaces, determine M
@ Main challenge: define quantitative measure of exhaustion

@ Model fast drift processes: exponential decay to f-manifold
@ Integrate slow drift processes using EM

@ Integrate diffusion term using EM

(can be similarly applied to other explicit SDE integration schemes)
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CLE-CSP Time Integration

Path-wise CLE Difference equations, with X% := X (¢, n%)

Xy g = X¢ + f(XP)dt + g((Xy,m*)Vdt.

Thus the CSP time integration is as follows,

~

M
Xiae =Xy + Zfl(Xﬁai(X?’) (XN — e WmEd)

\
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CSP-CLE

CLE-CSP - Determination of M

The determination of M in an ODE setting is as follows:

m

M =maxm st Tm+1| E a;f’
i=1

<ex—+e,l

@ Stochastic noise renders this test 125
ineffectual for the CLE

@ The mode amplitudes &¢ for any
sample-path do not decay to zero

@ Choosing an arbitrary threshold is

unreliable il |

@ Areliable approach involves utilization
of sample-path statistics 2 3 3 5
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CSP-CLE

Model 3-Species System - Mode Contributions

100 samples
156408 T T T T T 4 2e+08 T
§ ~. 1.5e+08
T le+08 1
# ~
L &~ le+08
o Se+07 3
o £
TI* . Se+07
o 0 s
6: wp 0 ——
St +~.<
-Se+07 B ses07
L 1 L 1 ' | L 1 L #h | | 1 | 4
0 000 0002 0003 0004 0.005 0 0001 0002 0003 0004 0005
time (sec) time (sec)
1
§ay

§loy +&ay

@ Noise leads to challenging exhaustion detection problem
@ Need a robust means of selecting thresholds
@ Ensure that the absolute value of the sums is “small”
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CSP-CLE

Model 3-Species System - Mode Contributions

100 samples
le+07 le+07
b
S o
T Se+06)- L 5e+061
I o
: or TL 0
1 %
\’ d,\l 3
~§ ~5e+06}- ‘{ Se+061-
2
-le+07 ‘ g : Y L
0 0002 0004 0006 0008 001 Sy Ty
time (sec) ' ) time (sec)
1
§oy Sla, +£2a,
@ Noise leads to challenging exhaustion detection problem
@ Need a robust means of selecting thresholds
°

Ensure that the absolute value of the sums is “small”
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CSP-CLE

A Reliable M-Detection Strategy

@ Run K samples concurrently

e Examine statistics of &,,, = ’ Y fay

@ Define the G,,, K-sample mean and standard deviations 1,,, ;, 0, x
@ Declare a set of m decaying modes exhausted when i, x < 0,k

@ Also ensure that the drift time scale of the fastest slow mode
(“active” mode) is faster than the fastest diffusion time scale

such that

Mo i < ﬁ OmK

. J,
Max 7,1 <7 ”’;J”ﬁi
s ; :

Weuse 3 =5,7v=0.5
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CSP-CLE

Choice of time step

@ Integrate all K samples synchronously in time, same At for all
At < n*lncin Ty k for M =0
At* € [mkax TM k> rr}cin Tariikl for M >0

1e+08 ——rrrr— — —~ 1e+08
\
T, =
5 le+06 I 2 le+06[-
2 — e
Z e ! o e
=7 10000 q & 10000
! & K
“100 = 310
3 E — g
& 8 3 2
£ 0.01 Ay, f 0.01
S a :
0.0001 Aty 4 0.0001
NERTTT M— araul ul PENEETIT — sl aul
0.0001  0.001 0.01 0.1 1 0.0001  0.001 0.01 0.1 1
time (sec) time (sec)

@ Reduce impact of large sudden increase in At; enforce
At, = min(At*, 2At, )
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Demo

CLE time integration with CSP - Error convergence

le-02 — T
F le+00 - =
=
£
=
g 2 3
) S le-02f
£ 10031 2
= F g
2 2
= g
13 [
o le-04
. | . " MR Ll . s P
le-04 le-05 le-04 1e-05 le-04
time step (sec) time step (sec)

@ Convergence is with respect to small-At computations with EM
o First order weak-convergence of EM is retained
@ for both the mean and standard deviation
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Demo

Michaelis-Menten system CLE

8000 T : r T - 0.03
2500 £ —0.025
o
@ 30.8 2
z % M
520001} x e 002 o
] [ 50.61 R
2 o
Z 1500/ z & 00152
s S04l At 172
2 _“2 5 E
E 1000 - £ —0.01
3 02+ 1
G 2
500} -ag‘y;ﬁ& - £ —0.005
\ Y ol :
\ ————— = 0 4
| 1 L T 1 1
% 0.05 0.1 0.15 0.2 0 005 01 0.15 0d
time (sec) time (sec)

@ M goes up to a maximum of 1
@ Limited by diffusion time scales

@ Noise in M-selection induced
by the noisy sample-based 7.7

Time scale (sec)

in

!
0.1
time (sec)
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Comp

Computational Performance

Computational savings of large explicit time steps have to be balanced
against the costs of Jacobian eigensolves

@ Our current EM implementation is 1.5 x faster than CSP integration

Potential remedies to improve computational performance include:

@ Resolving the diffusion-induced upper limit on At, thus allowing
larger time step computations

@ Reusing the computed eigendecomposition of the Jacobian over
some number of time steps
@ Reuse enabled 2-5x speedup in a similar (ODE) integrator for

systems with up to 561 species and 2538 reactions
(Valorani et al., 2018)

@ Exploring eigensolvers that can

- make efficient use of a good initial guess
- compute only the fastest M/ + 1 eigenmodes
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Close
Closure

@ We demonstrated the utility of CSP for enabling large time step
explicit integration of stiff CLEs

@ We retain the weak convergence rate of the explicit integrator in
both mean and standard deviation

@ Numerous directions for future work are feasible

@ Develop adequate modeling of fast diffusional processes
@ Reduce eigendecomposition costs

- reuse, good initial guess, partial eigensolve

@ Development of treatment for multiple manifolds and
switching between basins of attraction

Collaborators

@ Xiaoying Han, Auburn University, Auburn, AL
@ Mauro Valorani, Sapienza University, Rome, ltaly
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