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Program Overvie

o Past work under BES GPCP

co Detailed kinetic modeling and analysis of hydrocarbon flames
o Chemical model reduction with Computational Singular

Perturbation (CSP) methods
o Uncertainty quantification in chemical kinetic models
o Estimation of uncertain kinetic rate constants with missing data

o Present work

o Stochastic chemical systems
o Bayesian optimal experimental design

o Today's talk focuses on stochastic chemical systems

co The chemical Langevin equation (CLE)
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Motivation

o The chemical master equation (CME) governs the evolution of
chemical systems at molecular scales

co Discrete Markov system - integer valued molecular counts

o The Chemical Langevin Equation (CLE) is good path-wise
approximation for the CME when the # of molecules of each species
in the control volume is large enough - continuous Markov system

(Gillespie JChemPhs 2000,Hildebrand & Mikhailov WhysChem 1996)

o The CLE is relevant when the number of molecules of each species is
small enough so that stochastic effects are non-negligible

- macroscale deterministic models are inadequate

• Relevant applications:

• catalysis

o e.g. noise-induced transitions bet. bistable states - CO:Pt

o biochemistry
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Stochastic Chemi al System Formulati n

o Consider a chemical system

o with N species 81, • •• , SN, and R reactions .R1, ...,
o spatially uniform, fixed volume, constant temperature

• X,(t): # s, molecules, time t, and: Xt := (Xl (t),... , X N(t))T

o Chemical Langevin equation (CLE)

dX (t) = viipi(Xt)dt + p (X t)dW3 (t), i = 1, ••• , N
=1

o v33 is the change in X, caused by one .T7 reaction
o p 3 is the propensity function for reaction .R3
o W3 (t) are statistically independent Brownian motions

We can write the CLE, for convenience, as

dX, = f (X t)dt + E317 g (X t)dW3 (t)
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SDE Time Integra

• The time integration of the CLE can employ a range of available time
integration schemes for stochastic differential equations (SDEs)

o Consider the Itei SDE

dX = f (Xt)dt + g(Xt)d147,

o Time integration

Xt = Xto + f f (X 8)ds f g(X8)dW,
to

o Euler-Maruyama (EM)

Yn-ri = -17n, fThlin giArti

explicit, order 1 weak convergence

hn = tn+1 — tn, Yo = Xto

• EM is the simplest explicit SDE time integration
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SDE Stiffness

o An SDE is stiff when it exhibits a large range of time scales

o A chemical system with very slow/fast reactions results in a stiff CLE

o Stiffness results in challenges for explicit SDE time integrators

o Stability requires time steps smaller than the fastest time scale
o However, for accurate time integration, ideally, the optimal time

step choice is dictated by the active time scale

o One remedy is to use implicit time integration, but can we do better
with explicit constructions?

o This has been done for ODEs using Computational Singular
Perturbation (CSP)

Valorani & Goussis, JCP, 2001

o We would like to extend this to SDEs, specifically to the CLE

- Utility for both time integration and analysis
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• Autonomous stiff ODE system = g(x), x E PN

• Define basis vectors al (x), , a N(x), row vectors b1(x), , bN (x)

- with b'ai 6ii

o Expand the RHS in this basis: g(x) = ENl aifi, with f g

whence:

A G pN/N,

d [f
1

dt f fN
A(x) :

J g)a and J
9 age 
= is the Jacobian of g

The ideal basis decouples fast and slow processes, i.e. diagonalizes A

o Eigenvectors of J9 are an approximation of the ideal CSP basis

- Exact for a linear system, where dt 0, Vi

co Decoupling allows time-scale-informed time integration
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CSP Illustration with a Model ODE :m
r = 0 - 10

Time evolution of the state

1=0 -10
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Time evolution of CSP (signed)
vector in the configuration space mode amplitudes f1, i = 1, 2

z := I yJ & -y := 1/e:Lx
= g(z) =

x 
[—TY ± 1

-yx 
x (1 + x)2
—x

(Davis and Skodje, J.Chem.Phys. 1999)
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CSP Illustration with a Model ODE system
= 0.0001

Time evolution of the state
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(Davis and Skodje, J.Chem.Phys. 1999)
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CSP Illustration with a Model ODE system
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Time evolution of the state
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(Davis and Skodje, J.Chem.Phys. 1999)
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CSP Illustration with a Model ODE system
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CSP Illustration with a Model ODE system
i=0.I

Time evolution of the state
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CSP Illustration with a Model ODE system
=

Time evolution of the state
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(Davis and Skodje, J.Chem.Phys. 1999)
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CSP Illustration with a Model ODE system
t = 10

Time evolution of the state
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CSP Decompositi n and Time Integrati

ODE: = g(x), x E [RN

Evaluate eigensolution for Jacobian matrix Jg, and sort the eigenmodes

Al, , AN with IAi IAi+1l

with time scales ri = 1/1Ai l and ri Ti+l

g = Eaifi = al f1 + + amfm +
i=1

gfase-'13

Explicit integration in time

fam+1 M+1+ ..• + aNfN

gslow

M t„1

Xn+1 = xm aifidt + E
i=1 tn i=m+1

Amplitudes of fast exhausted modes decay exponentially, thus:

M N

Xn+1 = xn Ea7ATr(1_ e't/T1.) + E a7,AAt
i=l i=m+1
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CLE Stiffne s and Dynamical Response

• A stiff CLE exhibits stochastic 3000

manifolds
2500

fa Basins of attraction defined by
partial mean-equilibration of fast 2000

drift processes
1500 z

o Meaningful for drift processes
that are faster than diffusive
time-scales

§
z

1000
'N.

o Focus on eigenstructure of the drift
500 441

 

_ -

term oo  0.05 0.1 0.15 0 2
time (sec)

co Address decay and exhaustion of Michaelis-Menten CLE system
drift processes in the mean
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CSP Applied to the CLE (Han,Valorani, Najm, J. Chem. Phys. 2019)

o CLE

Xt+dt — Xt f (Xt)dt + E g (X t)dW3 (t),
j=1

o Introduce the CSP basis {ai, 05}, i = 1, , N, with • ai = Sii, Vi
o The (signed) mode amplitudes for the drift term are

e(X) = 01(X) • f (X)

o Using the stochastic chain rule, with some algebra, we have

where

A E RNxN

• c RN

✓ E RNxR

= AOt + cpdt + rav(t)

:1[3i T
Aii = P dflai
(pi v,AT v,1\T 82pm

4r=1 k,1=1 jon=1 1/jklijllimr axkox,P3
rzj= 1 14arj
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Linearizatio
CSP-CLE

n of the SDE for the Modes

o We use this SDE, linearized, to motivate the use of the eigenvectors
of Jf as CSP basis vectors, as done for the ODE case

o A linearized analysis gives

c14' = AOt + FdW(t), with Ao = OiJfai

o Choosing a, as the right/left eigenvectors of Jf diagonalizes A,
and decouples the time evolution of the mean modes

- for modes with eigenvalues with different real parts

• For the nonlinear CLE, as opposed to a general SDE,

• Magnitudes of components of co are small relative to those of A
• The use of the linearized approximation is viable
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Proposed CSP-CLE time integration strategy

• Integrate the drift term using CSP - at every time step:

co Evaluate eigendecomposition of Jf = Of 10x, and sort them

Al, ••• AN

with time scales Ti = 1/1A,

f =

with > lAi+1

and Ti <

ctAgm am+1e1+1 IgN

i= 1
ffast fslow

o Identify fast/slow subspaces, determine M

• Main challenge: define quantitative measure of exhaustion

o Model fast drift processes: exponential decay to f-manifold
co Integrate slow drift processes using EM

o Integrate diffusion term using EM

(can be similarly applied to other explicit SDE integration schemes)
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CLE-CSP Time Integration

Path-wise CLE Difference equations, with Xt := X (t, If)

= + f + g((.7q`' ,Xc;:'+dt

Thus the CSP time integration is as follows,

M

=- At t ▪ Ee(xnai0q,),(1q,)(1-e_Atir,(xn)
i=1

▪ E e(xiloti(X,f) At
i=m+1

+ g((X  qw) V At
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CLE-CSP - Deter ination of M

The determination of M in an ODE setting is as follows:

M = max rn s.t. 
Tm+

i = 1

fZ < crx + cal

• Stochastic noise renders this test 1.25

ineffectual for the CLE

• The mode amplitudes for any
sample-path do not decay to zero

o Choosing an arbitrary threshold is
unreliable

o A reliable approach involves utilization
of sample-path statistics

0.75

2 3
x
4 5
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Model 3-Species ystem - Mode Contributions

100 samples

1.5e+08 2e+08

1.5e+08
le+08

II le+08

5e+07
il

5e+07 —
!!.. 3

>LP
" 3

-5e+07
-5e+07

0.001 0.002 0.003 0.004 0.005
time (sec)

0.001 0.002 0.003 0.004 0.005
time (sec)

_L

o Noise leads to challenging exhaustion detection problem

o Need a robust means of selecting thresholds

o Ensure that the absolute value of the sums is "smar
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Model 3-Species System - Mode Contributions

le+07

2
5e+06

▪ 0

II

• -5e+06

- le+07
0

100 samples
le+07

2

/ 
Of 11

ik 4.4

0.002 0.004 0.006
time (sec)

1 a 1

0.008 0.01

5e+06

0.01
time (sec)

el 011 +

0.001

o Noise leads to challenging exhaustion detection problem

• Need a robust means of selecting thresholds

o Ensure that the absolute value of the sums is "small-

0.1
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A Reliable M-Detection Strategy

co Run K samples concurrently

• Examine statistics of m = 
Ein

• Define the 6rn K-sample mean and standard deviations p„,K, a-mic

co Declare a set of m decaying modes exhausted when µmK < arnic

o Also ensure that the drift time scale of the fastest slow mode
("active mode) is faster than the fastest diffusion time scale

M = max m E [1, N]

such that

tamic < amic
. J

max rm+1,k < 'y min T 91 k

We use = 5, 7 = 0.5
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Choice of time

o Integrate all K samples synchronously in time, same At for all

At* < min 71 k
k '

At* E [max Tm k, min Tm_pl.k] for M > 0

le+08

le+06

10000

• 100

.c • 0.01
O

0.0001

0.0001 0.001 001 0.1
time (sec)

for M = 0

0.001 0.01
time (sec)

o Reduce impact of large sudden increase in At; enforce

Atr, = min(At*, 20t71 1)

0.1
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CLE time in egration with CSP - Error cmierger
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• Convergence is with respect to small-At computations with EM

• First order weak-convergence of EM is retained

• for both the mean and standard deviation
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Michaelis-Men en system CLE
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• M goes up to a maximum of 1

o Limited by diffusion time scales

• Noise in M-selection induced
by the noisy sample-based rgin
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rformance

Computational savings of large explicit time steps have to be balanced
against the costs of Jacobian eigensolves

o Our current EM implementation is 1.5x faster than CSP integration

Potential remedies to improve computational performance include:

o Resolving the diffusion-induced upper limit on At, thus allowing
larger time step computations

o Reusing the computed eigendecomposition of the Jacobian over
some number of time steps

o Reuse enabled 2-5x speedup in a similar (ODE) integrator for
systems with up to 561 species and 2538 reactions

(Valorani et al., 2018)

o Exploring eigensolvers that can

- make efficient use of a good initial guess
- compute only the fastest M + 1 eigenmodes
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o We demonstrated the utility of CSP for enabling large time step
explicit integration of stiff CLEs

o We retain the weak convergence rate of the explicit integrator in
both mean and standard deviation

o Numerous directions for future work are feasible

o Develop adequate modeling of fast diffusional processes
o Reduce eigendecomposition costs

- reuse, good initial guess, partial eigensolve

o Development of treatment for multiple manifolds and
switching between basins of attraction

Collaborators
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o Mauro Valorani, Sapienza University, Rome, Italy
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