

Marine & Hydrokinetic Advanced Materials Program

PRESENTED BY

James R. Nicholas*, Bernadette A. Hernandez-Sanchez, Budi Gunawan,
George Bonheyo, David Miller, Francisco Presuel-Moreno, Scott Hughes

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Program Overview

Marine and Hydrokinetics Advanced Materials Program: support the MHK industry through applied research and guidance on Materials & Coatings to enable viability, lower the cost of energy (COE), and accelerate commercialization

The Challenge: Proper structural/component materials and coatings are critical to reducing engineering barriers, COE, and commercialization time

- **Structure Design & Component:** (LOADS! uncertainty in composite/design)
- **Environmental Exposure Issues**
- **Cost (Manufacture, O&M, Reliability)**
- **Safety & Certification**

Current Program Objective: **Helping MHK industry reduce uncertainty in using composites in their designs**

- Direction taken from 2015 Workshop on Composite Needs for MHK and industry partners
- Past efforts involved determining materials needs for industry, examining coatings for biofouling, and examining marine effects on wind based composites

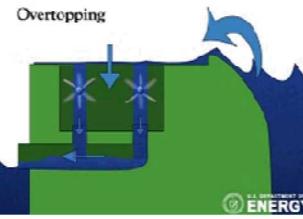
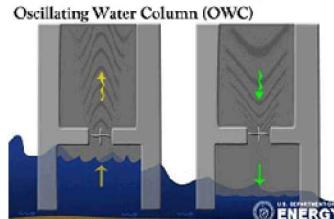
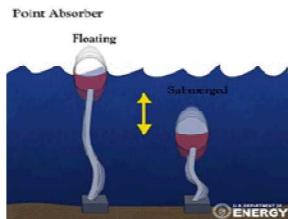
Materials can impact areas that affect commercialization

- Structure costs
- Design & manufacture
- Accelerate manufacturing or direct advanced manufacturing strategies
 - We are working to reduce risk through testing of novel materials and validate materials from other marine-based industries under MHK conditions.
 - Future testing on materials under deployed conditions are needed for validation.
- Reliability & Survival
- Operation & Maintenance
- Certification & Safety

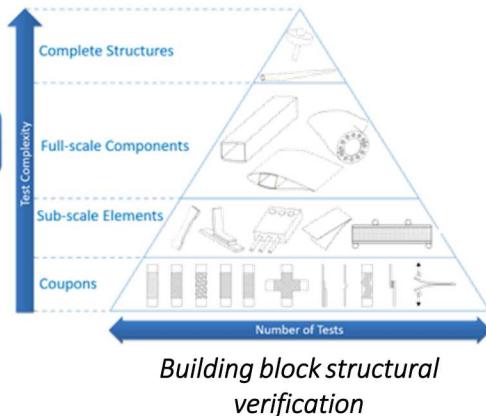
Helping the MHK industry with materials challenges

Courtesy of Resolute Marine Energy

<http://www.yachtsurvey.com/glaesboats-1.jpg>




<http://www.racerocks.ca/>

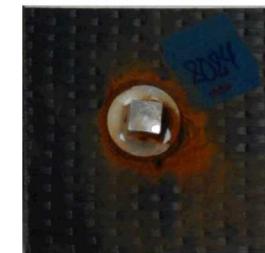
ICIT & EMEC


<http://tidalenergytoday.com/2016/01/12/icit-emecc-study-biofouling-of-marine-energy-technologies/>

Why investigate fiber reinforced composites?

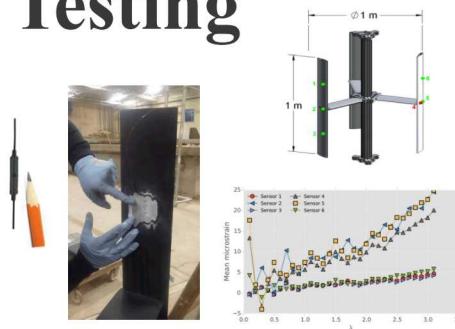
- **Areas of concern vary by design:** metals, hydraulic fluids, polymers, cement, magnetic, coatings, composites
- **Composites Include:** Reinforced rubbers, reinforced concrete, fiber reinforced plastics
- **Studies indicate impact to cost:** Reference Models (SNL, NREL); Wave Energy Scotland Structural Loads and Materials Landscape Study; and 2011 Carbon Trust report indicate the structure costs can be impacted by using light weight and non-corroding materials.

Goal is to address barriers & uncertainty in using composite materials for MHK.

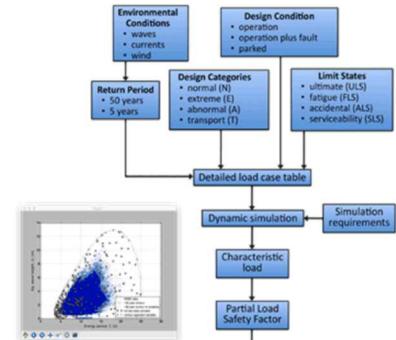

Sea Water Effects on Composite Performance

Biofouling & Environmental Effects on Composites

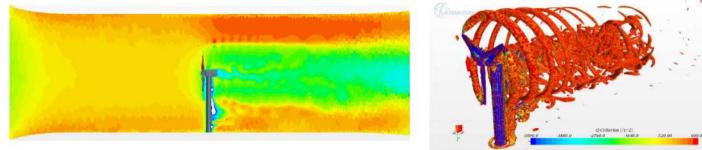
Corrosion of Metal - Carbon Fiber Composite Interconnects


Environmental effects on mechanical property

- Saturation
- Strength
- Fatigue


Design considerations for marine environment exposure

- Increase in factor of safety
- Maintenance schedules
- System Lifetime


Provide Realistic Load for Material Performance Testing

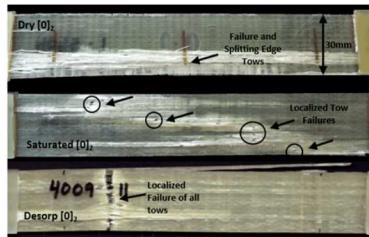
Fiber Bragg's Grating for real time strain measurements

Process for determining loads via load cases*

Dynamic and load characteristic simulations

Design load

$$F_d = \gamma_l F_k$$

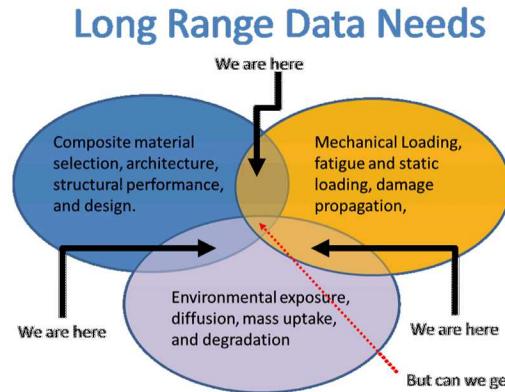

< Material's strength

$$f_d = \frac{f_k}{\gamma_m}$$

Industry needs for structural and mechanical load measurements

- Load measurement and verification is identified as the highest priority standard for development based on input and agreement from the National Committees”
- Cost effective and reliable means of accurately measuring structural loads in real time during ocean trials
- Load data during field operation to validate structural and hydrodynamic models, provide confidence in system reliability
- Predictive loads for mechanical designs and testing

Where we are and What is to come


Coupon Mechanical Test Specimen

Coupon level study complete

- Effects of soaking and temperature
- Saturation under an applied stress
- Tension-Tension Fatigue
- Stacking sequence and partial saturation
- Altered damage mechanisms after saturation

Sub-scale element testing in progress

- Build on finding from coupon-level results
- Determine design loads for large subcomponent
- Instrument subcomponent with load sensors

*Sub-scale element:
bearing stress
specimen*

Develop and demonstrate subcomponent test methods

- Reduce the time and cost required for full-scale structural validation
- Provide near net-scale static and fatigue data on composite subcomponents of materials for MHK system