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2 Long-Term Vision for AM Adoption

Taken from Born Dualified Grand Challenge LIED: Revolutionize design and manufacturing by combining Additive Manufacturing (AM) techniques
with deep materials and process understanding to transform qualification paradigms where materials, designs, and ultimately components are
gam flys/if/Bo'

➢ Inherently requires linking Process-Structure-Property-Performance (PSPP)* relationships

*Typical Development Cycle

*Reduced Build Cycle with AM 

*Reduced Test Cycle by Predicting Performance 
+ Agility = rapid response to emerging challenges
+ Faster failures & successes
+ More build iterations = greater confidence
+ More time to design
+ Cost & schedule savings

Figure: Allen Roach *Olson Sciefice,2000



3 I Models Bridging Length Scales
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5 Progress Toward Linking Process-Structure-Property-Performance Relationships

1. Residual Stress Prediction at Varying Fidelity and Efficiency

2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts



6 I High Fidelity Process Models Provide Resolution at Each Laser Pass
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7 I High Fidelity Models Inform Reduced Order Models
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Similar to Hodge et al. 2014 and 2[116, Ganeriwala et al. 2019



8 Progress Toward Linking Process-Structure-Property-Performance Relationships

1. Residual Stress Prediction at Varying Fidelity and Efficiency

2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts



Microstructure Prediction in Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) —
9  http://spparks.sandia.gov
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10 Progress Toward Linking Process-Structure-Property-Performance Relationships

1. Residual Stress Prediction at Varying Fidelity and Efficiency

2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts



11 I Sandia Fracture Challenge: Blind Predictions of Ductile Failure
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The Sandia Fracture Challenge: blind round robin
predictions of ductile tearing
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12 I Bammann-Chiesa-Johnson (BEL) Constitutive Model for Plasticity
I

• Based on work by Bammann et al. 1003, Brown and Bammann 2012

• History-dependent viscoplastic internal state variable model

• Stress is dependent on damage 4) and evolves according to

6 if = EE 1 4) 4) a i j + E(1 — 0)(ei; — er;)(

• Flow rule includes yield stress and internal state variable for hardening

0-e 

K
eP = sinh(Y + 1)

I

• The isotropic hardening variable K evolves in a hardening minus recovery form.

(Tr n
= K — — riciK)ep

Johnson et al. IJF (Accepted)



13 Fracture Surfaces Indicated Both Existing Pores and Pore Nucleation
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14 Incorporating Porosity as Initial Damage

Chart

35 100

28  80

  60

0
0 14  40

7  20

0
2.30 5.00 10 00

CircDiam (pm)

Porosity Mapping
x,yrzypore

0
40.00

Cu
mu
la
ti
ve
 (
%
)
 

: : : : : : : : : : : : : : : : : : : :

• •

Damage
I 0.200000

0.150025

0.100050

[1.050075

0.000100

• •

•

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

Johnson et al. IJF (Accepted)



1 5 I Calibration Results for High Throughput Tensile Testing
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16 Porosity Overlaid on harter-Symmetry Challenge Geometry
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17 I Blind Performance Prediction
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18 I Different Porosity Distributions Affect Crack Path
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Modeling the Effect of Pores and Surface Roughness From High-Resolution CT Scan in
19 Follow-up Investigation
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20 Inclusion of Voids and Roughness Changes Material Response
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21 Fffilure Prediction Goal
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A Tribute to Tarek Lohdi: A Posteriori Error-Estimation Techniques Offer Path to Efficiently Represent AM
22 Microstructure When Scale Separation Fails

1. Generate Microstructures Using Kinetic Monte Carlo (KMC)
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23 Current State

• Dan accurately predict residual stress in complex parts

> Reduced order methods are faster than real-time

• Microstructure morphology predictions qualitatively match experiments

> Orientation prediction has been demonstrated

• Part performance and failure can be predicted using existing tools

> Part geometry can be used as a tool for flaw tolerance

Future Directions

• More efficient thermo-mechanical process simulations (analytical heat sources, FFT, etc.)

• Process-aware design optimization considering residual stress (current PLATO LDRD)

• Orientation and porosity prediction in SPPARKS

• Microstructure optimization for locally-tailored properties

• Rapid part acceptance/rejection based using Deep Learning



24 Backup Slides



Modeling the Effect of Pores and Surface Roughness From CT Scan in Follow-up
Investigation

Clean STL in MeshLab
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26 SPPARKS Direct Coupling With Finite Difference Thermal Conduction Model

• 2.8 x 2.8 x 5.5 mm domain 
• Process parameters calibrated for 3D Systems ProX DMP 200 machine

• Layer thickness = 30 pm
• Hatch spacing 50 pm
• Scan rate = 1400 mm/s
• Laser power = 129 W
• Scan strategy = -F/-90 alternating

• Includes powder phase with 0.01 of solid conductivity
• Simulation domain boundaries fixed at 300K
• 5 pm grid
• 21.8 m of scan path simulated
• 157 layers

Theron Rodgers

•



27 Microstructure Evolution is Sensitive to Thermal Parameters

Experiment

All simulations performed with nucleation densities of 8e13

Absorbed laser power

Theron Rodgers



28 Top View of Build
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29 G/R and Grain Size Plots
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30 Up-close comparison
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How do we account for unknown critical flaw such as tunneling
31 porosity? High Throughput Characterization + UQ?
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32 Microstructure By Design
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Process-dependent Microstructure
(Popovich et al., Materials Et Design,

2017)

Design Optimization
Code Such as PLATO

Site-specific optimized
microstructure through

process control
Jared et al., Scripta Materialia 2017



Microstructure Prediction in Stochastic Parallel PARticle Kinetic
33 Simulator (SPPARKS)
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- The molten zone randomizes grain identities when it enters a region.
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Transition From Equiaxed to Columnar Structure Predicted,Though
34 Grain Size Was Too Large
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Johnson et al., Computational Mechanics 2018


