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2 I Long-Term Vision for AM Adoption

Taken from Born Qualified Grand Challenge LDRD: Revolutionize design and manufacturing by combining Additive Manufacturing (AM) techniques
with deep materials and process understanding to transform qualification paradigms where materials, designs, and ultimately components are

Born Qualified

> Inherently requires linking Process-Structure-Property-Performance (PSPP)* relationships

*Typical Development Cycle

Iterate

* Reduced Build Cycle with AM

+ Agility = rapid response to emerging challenges
+ Faster failures & successes

+ More build iterations = greater confidence

+ More time to design

+ Cost & schedule savings

Figure: Allen Roach *Olson Seigmce, 2000



3 I Models Bridging Length Scales

LAMMPS Build Scale Thermal + Mechanics
K. Johnson, K. Ford, L. Beghini, M. Stender & J. Bishop

ARIA Solidification Scale Thermal
ADAGlO M. Martinez, B. Trembacki, D. Moser
SPPARKS .

Free-Surface Motion *Curvature & Maragoni Stress
-ALE

Powder Spreading
D. Bolintineanu

Powder Behavior

M. Wilson

Build Scale Microstructure
T. Rodgers, J. Madison

id Mechanics
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5 | Progress Toward Linking Process-Structure-Property-Performance Relationships

. Residual Stress Prediction at Varying Fidelity and Efficiency
2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts



6 I High Fidelity Process Models Provide Resolution at Each Laser Pass
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High Fidelity Models Inform Reduced Order Models

|

i

3.0e+08
2e+8 3
lets <
0 0
&H
-le+8 ks
-2e+8 é

-3.0e+08

Axial Stress (Pa)

G

Enlarged Heat Source™ and Layer
Thickness

100 cpus
B hrs (~real time)

Mechanical Inherent Strain
B0 cpus
30 minutes

* Similar to Hodge et al. 2014 and 2016, Ganeriwala et al. 2019

=

Axial Stress (MPa)

Axial Stress (MPa)

Predicted Axial Residual Stress

600
[ —— Model South
‘! —— Model Center ]
400 - I‘ ’ —— Model North ’
- & Exp. South
- & Exp. Center
' - & Exp. North
200
0 4
—200
—-400 T T . . : .
0 5 10 15 20 25 30 35
Distance From West Edge (mm)
Predicted Axial Residual Stress
600
[] —— Model South
‘; —— Model Center 3
400 - I. . —— Model North /
-§& Exp. South :
- & Exp. Center
o - & Exp. North
2 B
0 4
—200
—400 T T T
0 10 20 30

Distance From West Edge (mm)




s I Progress Toward Linking Process-Structure-Property-Performance Relationships

. Residual Stress Prediction at Varying Fidelity and Efficiency
2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts



Mot SR

Microstructure Prediction in Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) -
o I http://spparks.sandia.qov
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10 I Progress Toward Linking Process-otructure-Property-Performance Relationships

. Residual Stress Prediction at Varying Fidelity and Efficiency
2. Microstructure Prediction

3. Predicting the Mechanical Performance and Failure of As-Built Parts
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Sandia Fracture Challenge: Blind Predictions of Ductile Failure

Int J Fract (2016) 198:5-100

Int J Fract (2014) 186:5-68 DOI 10.1007/510704-016-0089-7

DOI 10.1007/s10704-013-9904-6

ORIGINAL PAPER 'SANDIA FRACTURE CHALLENGE 2014 [

The second Sandia Fracture Challenge: predictions of

The Sandia Fracture Challenge: blind round robin ductile failure under quasi-static and moderate-rate
predictions of ductile tearing dynamic loading
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The Third Sandia Fracture Challenge - 206

3I6L AM Part
 [oal: Predict Tensile Failure
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EHT=1000kv ~ WD=188mm  Signal A= SE2 Width = 670.9 ym




12 I Bammann-Chiesa-Johnson (BCJ) Constitutive Model for Plasticity

=  Based on work by Bammann et al. 1993, Brown and Bammann 2012

= History-dependent viscoplastic internal state variable model

= Stressis dependent on damage ¢b and evalves according to
. (E ¢  .p
O-ij — (E — m) O-ij + E(]. — (]5)(61] — Eij)

= Fow rule includes yield stress and internal state variable for hardening

€

— sinh( O¢ 1)
p = S0 Y+«

= The isotropic hardening variable k evolves in a hardening minus recovery form.

K = K‘%-i- (H — Rgk)é,

Johnson et al. IJF (Accepted)



13 I Fracture Surfaces Indicated Both Existing Pores and Pore Nucleation

Void Nucleation

Fine scale voids (< |um) indicate nucleation

4 J3 J3 (p)
2B NS LN

T] nep 1 J23 O'e

Void Growth

EHT =10.00 kv WD =188 mm Signal A = SE2

Pre-existing voids captured by void growth

. 2.1_(1_¢)m+1.
o= 36 1=9)" sinh o1 o

Total Damage

Ny
¢_1+nvv

(Horstemeyer & Gokhale 13939) Johnson et al. IJF (Accepted)

}_| EHT =10.00 kv WD =188 mm Signal A = SE2 Width = 670.9 um
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Incorporating Porosity as Initial Damage
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Johnson et al. IJF (Accepted)



15 & Calibration Results for High Throughput Tensile Testing

640

620 §

600
D % g 580
amage 5¢
von Mises (Pa) 30009-01 § §
1.000e+09 ) £ 560
=0.37502
—=7.5e+8 E 540
E £0.25005
=5e+8 3 920
E £0.12507
—2.5e+8 L} . 500 L— . - -
E 0.0 0.5 1.0 1.5 2.0 4 y £ 1.7 1.8
0.000e+00 1.000e-04 Displacement (mm Displacement (mm

A parameter set was calibrated for each longitudinal tension test
Transverse and notched tensile data were not used due to time constraints

FEA performed in Sierra/SM
Calibration performed using Dakota and MatCal (Kyle Karlson)

Boyce etal., Adv Eng Mat 2017, Salzbrenner et al. JMPT 2017 [
Johnson et al. IJF (Accepted) )
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Multiple porosity initializations were used to capture uncertainty in performance

16 | Porosity Overlaid on Quarter-Symmetry Challenge Geometry



17 | Blind Performance Prediction

Sample A21
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18 | Different Porosity Distributions Affect Crack Path

(a)

s123 Cal 1

(b) s127517 Cal 1

(c) &

s123 Cal 11

* Porosity seed indicated by snumber., i.e. s|23 is a different realization than sl2 7417
e For the same calibration number (Cal 1), a different porosity seed yields a different crack path

Johnson et al. IJF (Accepted)



Modeling the Effect of Pores and Surface Roughness From High-Resolution CT Scan in
19 I Follow-up Investigation
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Goal: Develop stochastic relationships for void locations based on relevant parameters such as void clustering, void distance from free surfaces and
void volume fraction and apply to porosity overlay approach in efficient models

Slide Courtesy: Kyle Karlson, Guy Bergel
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20 | Inclusion of Voids and Roughness Changes Material Response
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Simulation results from ~13 million element
meshes generated from CT scans.

Slide Courtesy: Kyle Karlson, Guy Bergel
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Failure Prediction Goal

/Part and Loading Eunditiuh

Information

/Advanced High-Throughput Test\

Trained Deep Learning Network

- /

/ Fast Failure Pruhahility\

Prediction

P(¢) = 0.92

Accelerated Design Change

5



A Tribute to Tarek Zohdi: 4 Posteriori Error-Estimation Techniques Offer Path to Efficiently Represent AM
22 1 Microstructure When Scale Separation Fails

|. Generate Microstructures Using Kinetic Monte Carlo (KMC) 2. Run Homogenous Simulation With [sotropic Material Model

0 0.01 0.02 0.03 0.04
true strain

4. Compare to Direct Numerical Simulations of Full KMC Microstructure

: o Type 2 projection
Hemegeneous Isoirgpic Type 1 Projection (1 gghwa?z i{eration) Exact (DNS)

Dirichlet
projection
(submodeling) ¥

Jn-lft < [ (€ ~8): (@~ 0" dn

(Iohdi, Oden, Rodin, CMAME 198E)
Bishop and Brown, CMAME 2018 Minutes ~4 days on 2048 cpus
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Current State

Can accurately predict residual stress in complex parts
> Reduced order methods are faster than real-time
Microstructure morphology predictions qualitatively match experiments
> Urientation prediction has been demonstrated
Part performance and failure can be predicted using existing tools

> Part geometry can be used as a tool for flaw tolerance
Future Directions

More efficient thermo-mechanical process simulations (analytical heat sources, FFT, etc.)
Process-aware design optimization considering residual stress (current PLATO LDRD)
Orientation and porosity prediction in SPPARKS

Microstructure optimization for |ocally-tailored properties

Rapid part acceptance/rejection based using Deep Learning



24 | Backup dlides




Modeling the Effect of Pores and Surface Roughness From CT Scan in Follow-up
Investigation

Clean STL in MeshLab Modify in STL in Blender

0EG :
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== 5 2

Benerate pore SPN file using Python, Create STL file with Sculpt
and Cubit, and clean up voids file using MeshlLab
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Slide Courtesy: Kyle Karlson



26 I SPPARKS Direct Coupling With Finite Ditference Thermal Conduction Model

2.8 x 2.8 x 9.0 mm domain

Process parameters calibrated for 3D Systems ProX DMP 200 machine
« layer thickness = 30 pm
« Hatch spacing al pm
o Scanrate = [400 mm/s

...,
i I

e laserpower =129 W

« Scan strategy = +/-30 alternating
Includes powder phase with [0.01 of solid conductivity
Simulation domain boundaries fixed at 300K
g pm grid
21.8 m of scan path simulated
[a7 layers

Theron Rodgers



27 | Microstructure Evolution is Sensitive to Thermal Parameters

Experiment - Absorbed laser power

0 Ay

All simulations performed with nucleation densities of 8el3

Theron Rodgers




28 | Top View of Build

Absorbed laser power
e

Theron Rodgers




29

/R and Grain Size Plots
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Maximum grain size increases significantly with power

Increasing power results in subtle shift upwards into mixed/columnar regime

Maps do not provide significant information about degree of remelting -> resulting in similar distributions but
orders-of-magnitude variations in grain size

Each dot represents an individual grain (small grains over-represented vs volume fraction)

LR values recorded at grain centroid; may not represent entire grain
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30 | Up-close comparison
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How do we account for unknown critical flaw such as tunneling

99.9

t Characterization + UQ?

porosity! High Throughpu

i oL wm o iw vt WA ¥
X 904
2>
= 504
=
820 et
o 104 : y Tl
C:I; 5 p i /A s
m .y B 74T d " ild 2
> , A 3’ ' < /& »’: f" e
- ) . 4 - 4 A Build
© Fa Ls < W joon > ::ild;
S 1 ;i gy , < Build6
= [ P 1y e < i v Build7
= { I * Build8
U] - i S
700 800 900 1000 1100 12001300 1000 1100 1200 1300 1400 08 2 3 4567830 15
Yield Strength, MPa Ultimate Tensile Strength, MPa Strain at failure, %
- 99
(=]
é 50r
>
e
1 Build5 =
==l ] o] .
h 7 ‘ © 10
(]
1
o
g |
S |
2 / i
= , g
3. i il
0 L L L L s L " 0'1 i "'/n ! () R S Y i d 1"1‘1u‘ J
0 2 4 6 8 10 12 14 16 900 1000 1100 1300 1400

Engineering Strain (%)

Variation from Different Builds of
Same Part from Same External

Vendor
Boyce et al., Advanced Engineering Materials 2017

Ultimate Tensile Strength (MPa)

Cumulative Probability Distributions created by sampling

Weibull parameters from multi-variate Gaussian

distribution - Could provide lower bound on performance
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Microstructure By Design

10 20 30
Distance, mm

Process-dependent Microstructure

(Popovich et al., Materials & Design,
\ 2017) /

Jared et al., Scripta Materialia 2017

o

Design Optimization
Code Such as PLATO

L

4 )
Site-specific optimized
microstructure through

process control

o J




Microstructure Prediction in Stochastic Parallel PARticle Kinetic
33 I Simulator (SPPARKS)

Solidification
boundary (T=T )

‘ Sr?x;h Mobilty S . l "
y (T<T)) K- Molten zone ot
0% (T>T,)
I 0.25 I 2.50+5
b) Mobility field 0 a) Microstructure 0

*The molten zone randomizes grain identities when it enters a region.

* Along the trailing surface, voxels either join existing columnar grains or
form new grains.

kMC & Solidification

Structure
*The temperature gradient creates a corresponding gradient of grain

boundary mobilities via an Arrhenius relationship.




Transition From Equiaxed to Columnar Structure Predicted, Though
34 I Grain Size Was Too Large

Top of Build

Base Plate

100 110
Johnson et al., Computational Mechanics 2018




