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, | Outline

"Pre-compression capability at the Sandia Z-facility and STAR
*Why pre-compressed samples of H,-He?
"Pre-liminary data on H,-He

*Summary
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[ Components of pre-compression cell |

Sample thickness: 0.3728 mm
Sample diameter: 3.6 mm

[ Side View of the closed DAC
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[ Micro-photograph of the fluid mix ]




[ Target assembly for Z-experiment ]

{ Two stage light gas-gun at STAR y
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|Planetary pressure range achieved using capabilities at Sandia

| | |
Z Machine
l STAR Enhanced .
|Hy;:vetvelodt’yGuns ;
— STAR Three Stage Gun
\“ !
'_‘ ‘ \_ AL I I STAR Two Stage Gun |
. ‘ l
Y ““ STAR Powder Gun
| I
STAR 4" Air Gun
I
DICE Veloce
STAR Oblique Air Gun
|
TR 31" s M .D. Knudson
01 1 10 100 1000 10000
Pressure (GPa)

= Pressure range at STAR and Z ~10 to 1000 GPa
= Pre-compressed sample shocked at Z and STAR
= Z-timescales: Experimental time range
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K | Why Study Pre-Compressed H,-He Mixtures!?
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= H,-He major component of planetary = Pre-compression allows to access unique state off of the
interiors Hugoniot.
= Does He and H, phase separate in * Probe planetary states

Jupiter/Saturn?

Pre-compression allows access to unique states off of the principle Hugoniot.
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= H,-He major component of planetary = Large deviation between theoretical mixture models

interiors = Develop a capability to study H-He de/mixing using Z and
= Does He and H, phase separate in STAR gas guns
Jupiter/Saturn? = Pre-compression is the only way to study homogeneous

fluid mixtures of H,-He

1/ Pre-compression is the only method to achieve high density states of a homogeneous mixture initial condition \

|




: |Pre-compression only method to achieve high density states
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Pre-compression is the only method to achieve high density states of a homogeneous mixture initial condition




9 | Velocimetry Measurements of Gas Mixtures (H,:He)

PDV measurement
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o |VISAR and Temperature Measurements of Gas Mixtures (H,:He)
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o mme = Simultaneous VISAR and temperature measurements were performed
PDV = The temperature at the sample after the first shock was estimated to be

around 19,480 +- 603 K.
= Thermal emission data correlates well with the VISAR data.
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1 | Temperature Measurements of Gas Mixtures (H,:He)
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: |Ve|ocimetry Showing Particle Velocity and Shock Transit Times
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H, -He mixture with a Pt flyer at STAR

Pt U, (km/s) U, P po(Us — Uy) = p1(Us — Un)
Velocity (km/s) (km/s) (GPa)
PC 20 5.01 9524024  7.02£0.03  9.69+0.76 Py =Py = pIO(US — Uo)(U1 — Uo)
E, — Ey = §(P1 + Py) (Vo — V1)

= Successfully measured the particle velocity, shock velocity, and transit times from PDV data.
= Uncertainties in initial density, shock velocity
= Quality of data; Hugoniot uncertainty



s |Ve|ocimetry Showing Particle Velocity and Shock Transit Times
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Schematic for shock loading pre- Time (ns) Time (ns)
compressed H, -He mixture with a Pt flyer
at STAR.
Pt U, (km/s) U, P po(Us — Up) = p1(Us — Uh)
Velocity (km/s) (km/s) (GPa)
PL—F = Ug—Uy)(U; — U
PC 20 5.01 0524024  7.0240.03  9.69+0.76 L0 pl 0(Us = Uo) (U1 = Uo)
PC 24 4.25 7.86£031  5.76+0.05  6.64+0.49 E, —Ey = §(P1 + Py)(Vo — V1)

= Measured the particle velocity, shock velocity, and transit times from PDV data.

= Uncertainties in initial density, shock velocity, break-out times
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Summary and Path Forward

Pre-compression capability at Z and STAR

Measured the particle velocity and transit
times in H,-He mixtures

Simultaneous VISAR and temperature
measurements were performed

More experiments scheduled at Z and STAR to 2000_'5
build an EOS for mixtures with quartz standard

Design Change and Improvements
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