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2 SPARR's Foundational Research Goals

Increase the number of pixels possible in focal plane arrays to:
O Improve spatial resolution

O Improve signal-to-background ratio

Increase array sample rate

o Reduce latency in optical control systems for robotics and autonomy

O Improve transient signal onset-time accuracy

O Improve time-resolution of fast-changing signals

In contrast to available focal-plane systems

o High speed systems use burst memory, not persistent observation

o Demand and dissipate large amounts of power

o Poorly adapted to the spiking neural processing platforms in
development

Spiking neuromorphic

processing needs alternate

data sources to realize its
potential

•

SPARR adopts neural

concepts to address

the sensing for space
computing

Thermal image of IBM's TrueNorth (left/cool)

with support electronics, esp. FPGA (right/hot)
Jackson]



3 I Spiking Processing begins at the Phototransducer

SPARR is a focal plane array built from pixels

Each pixel is a spike generator

3.1

The Integrate-and-Fire pixel may by

thought of as a converter of optical

power to spike rate

Hybridization using

semiconductor layers may

enable non-CMOS photonic

such as

• Single Photo Avalanche

Diode (SPAD)
• InGaAs or HgCdTe for

infrared sensitivity

Monolithic CMOS enables
simplified fabrication. May

use microlens array to

increase effective

photodetector fill factor
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4 I Self-clocking Digital Asynchronous Processing Element (DAPE)
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Self-clocking; incoming spikes induce a clock function

Spikes are the data; incoming and outgoing spikes transfer information
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Multiple source spike

streams can be provided
to one DAPE input
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Arrival of spike on

negative input induces a

negative-line output spike
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State

2-input, 2-output DAPE abstraction

Arrival of spike on

positive input induces a

state change
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2-input, 2-output DAPE state
machine for differencing input lines
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5 One Topology of DAPES Performs Distributed in-FPA
Computing
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This Spatial Matched-filter

cascades into a spatial contrast

filter to enhance point-like

luminous objects

Many other signal processing

chains are possible.
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6 I Human Visual Data Rate Estimate

Channel Capacity
o Human optic nerve contains 0.7 to 1.7 million nerve fibers [Kolb] (106 fibers)

o Peak spike rates may be 100 Hz [Berry] but are typically less than 15 Hz [Perge] (15 spike/s)

o Timing uncertainty is about 1 ms [Berry] (10 bit/spike)

[spike [  bit bitl
106 [fibers] • 15 

s s ike
10 I = 1.5 x 108 [—

sp 

Sensor Capacity
o There are 6.4 million cones in the retina [Kolb]

O Approximately 100 ms integration time [Berry]

O Assume time precision also implies 10 bit/spike at transducer

[  bit  1  1  r1i
6.4 x 106 [cones] • 10

spike 10-1 s

Implies a Compression Ratio about 4:1

= 6.4 x 108
[bit]
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7 Gabor Transform as Biologically-Inspired Sensor Compression

• Gabor transform appears biologically similar to cortical response [MarCelja]
• It identifies edges in multiple orientations

• It operates across a wide range of scales
• In wavelet form can execute compression to 20:1 [Daugman]

Convolution with the Gabor
kernel emphasizes edges at

specific scales, aligned with the

rotation of the kernel

Gabor transform is not digital friendly
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8 I Haar Spatial Wavelet Transform

Level 2,
64 cA •
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Haar wavelet transform is digitally friendly

Similar Properties to Gabor
• Responds to edges in different orientation

• Represents multiple scales

• Capable of performing compression

arcsinh of Haar transform



9 I Haar Transform can Whiten Spatial Spectrum

Applying a deterministic weight
(spike decimation) at each level
of transform to whiten the
transformed signal

This performs significant
compression to the scene

Many natural scenes have similar
spatial spectra, so the
deterministic weight is broadly
applicable

Level 1 (arcsinh above) of the

decomposition contains 6% of the energy

of the total signal in 3/4 of the

decompo sition.

The vast majority of the signal energy is at

large scales (low spatial frequencies)

Level 3

1 ow

0

1 0
6

Level 2 L evel 1

f,

fre quency

Low-Frequency Roll-Off Model

Typically <—
Not Collected

E (k)

—> Full Earth Image From GEO

+

= 2.22478

0-6 104

Natural scenes tend to have

spatial power spectral density

like k-

1 0
-2



10 I Spike Processing Continues Into Quad-Tree Readout
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The quad-
the spike and the a

Ra y
adds 2 bits to

the previous layer's
address lin

o ards
of ery r spike.

Four processing DAPE provide data to each

base quad-tree node.

Quad
Tree
Node

I I 1
Time x y

1.10773 48 19
1.32928 21 11
1.55082 53 17
1.77237 12 3

1.99392 25 35

Haar spatial whitener allows scene

compression with little information

loss

The quad tree provides the sequence

of spikes to off-FPA processing
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11 Example: Imaging with Whitening at High "Frame" Rates
1024x1024 pixel array, each frame 2501.1s, total interval 10 ms

Original Image Time-Evolving Reconstruction from Quad-Tree Readout



12  Spike Trains from Haar + Quad-Tree may be Reconstructed to
get Time-Varying Signals

Reconstructed Scene with Fluctuating Source Reconstructed Time Series of Event Pixel

500 frame/sec reconstruction

2.7 dB SNR



13 I Example: Spike Processing for Tracked Satellite

Dark background, with only
random dark current noise 2000 -

A single luminous object is tracked
in the center of the focal plane

Stars (truth data) "streak" across
the background

FPA performs Haar transform and
quad-tree readout. Spikes for each
Haar coefficient are counted during
an interval.

The accumulator is inverse-
transformed, thresholded, and
plotted



14 1

7

X

0

250

200

150

fine

I (b

50 51,

200 100

Y (pixels)

1.5e+00
— 1.4

— 0.6
— 5.0e-01

c
o
u
n
t
s
_
r
e
c
o
n
 



1 5 Conclusion

SPARR offers an alternative data source to support neuromorphic processing, especially spiking
architectures
O Bio-inspired retina-like signal processing in the focal plane performs initial data compression

o Time encoding with sub-nanosecond precision provides a natural connection to time encoding (spiking)
processing

Couple with neuromorphic processing

o Object recognition: spatial transform and whitening may provide an effective feature space for multi-scale
processing, perhaps with spiking realizations of capsule networks or reservoir computing [Elsner]

O Optical temporal pattern extraction and recognition

O Object tracking: extension of object recognition to tracking via recurrent networks with memory ([Milan]
non-spiking)

o Spatial situational awareness: passive (non-radar) with neural optical flow processing (e.g., [Apitzsch] non-
spiking)

SPARR fits into the gap created by the creation of

new neuromorphic computing platforms
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