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2 | Context: Exascale HPC with Useful Quantum Computers

What is a Useful Quantum Computer [1]:
1. Universal and General Purpose: Not limited to a single class of problems
2. Accurate: Probability of error on the output can be arbitrarily small

3. Scalable: Resource requirements do not grow exponentially in the size of target error probability
of the computation

Quantum is Different with Interesting Applications:
o y/NOT: The laws of computation are different

> Quantum Chemistry [2]: With only 200 error-free qubits, a quantum computer could unravel
biological nitrogen fixation. Currently, the Haber-Bosch process consumes 2% of the world’s
annual energy supply.

° Quantum Zoo [math.nist.gov/quantum/zoo]: Many more algorithms

[1] B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html); [2] Svore, etc. Microsoft paper
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What is a Useful Quantum Computer [1]:
1. Universal and General Purpose: Not limited to a single class of problems
2. Accurate: Probability of error on the output can be arbitrarily small

3. Scalable: Resource requirements do not grow exponentially in the size of target error probability
of the computation

Quantum is Different with Interesting Applications:
VNOT: The laws of computation are different

> Quantum Chemistry [2]: With only 200 error-free qubits, a quantum computer could unravel
biological nitrogen fixation. Currently, the Haber-Bosch process consumes 2% of the world’s
annual energy supply.

o Quantum Zoo [math.nist.gov/quantum/zoo]: Many more algorithms

Building Quantum Computers is Challenging:
* Quantum Fragility: Quantum information is inherently fragile. An
infinite distribution of errors long the superposition of states
* Physics and Physicists are in charge
* Noisy Devices: Current devices are noisy. We don’t expect quantum
devices to be as good as classical transistors for information processing

[1] B. Eastin Tutorial (http://www.qgec14.ethz.ch/abstracts.html); [2] PNASv. 114 (29) 7555-7560(2017)
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The goal of Quantum Error correction and Fault-Tolerance: is to achieve (through redundancy) a
useful quantum computer given imperfect devices underneath

Redundancy is not Cheap: Operating on and correcting encoded quantum data will require many
orders of magnitude more physical qubits.

Useful Role for Today’s Smaller Devices: Demonstrate and validate theoretical concepts (e.g;, error
correction) applicable to more reliable platforms

[1] PNAS v. 114 (29) 7555-7560 (2017)



So, Fault-Tolerance!?

_—_—




Fault-Tolerant Classical Computing I

> Definition: A fault-tolerant computing protocol maintains general purpose computations I
efficiently in the presence of faults during the computation.

> Computational Model: Circuits in which each gate has exactly one output bjD ]

> Noise Model: Noisy gate = Ideal gate followed by a bit flip with probability p

> Goal: Approximate the ideal circuit to precision € using faulty gates bjD+—

o Approach: Encode the data and process it with encoded gates which suppress the spread
of errors

C
Encoded & @_ &
XOR
b C

> Threshold Theorem [von Neumann, 1952, 1956, 1966]: A g-gate ideal circuit can be
simulated to precision € by an 0(g log(g/¢))-gate faulty circuit

° as long as gate error rate p < P,, the accuracy threshold for classical computation
gas g c y p

° 2-input gate accuracy threshold [Unger, 2008]: p. =~ 8.9%

o
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Fault-Tolerant Quantum Computing

Definition of Quantum Fault-Tolerance: A quantum circuit is fault-tolerant against ¢
tailures if failures in t elements results in at most t errors per code block (group of
qubits corrected together)

Quantum Threshold Theorem: There exists a physical error probability p. below
which an arbitrary quantum computation can be performed efficiently

° Sketch [Aharonov Ben- Or quant-ph/9906129]: At k levels of encoding, the effective error rate
P; scales as p.(p/ pc) . For a computational of length N, we need log (log N) levels of

encoding,




9 | Fault-Tolerant Quantum Computing: Quantum Circuit Formalism

Definition of Quantum Fault-Tolerance: A quantum circuit is fault-tolerant against

t failures if failures in t elements results in at most t errors per code block (group of

qubits corrected together)

Qubit Quantum bit, i.e., a two-state quantum system.
a|0) + 3|1) where |a* + 3] =1

Gate Discrete operator, typically unitary, e.g.
@ The Pauli operators

=k o =l 3]

@ Other single-qubit rotations

o[ 3] 2Guef g o

@ Multi-qubit unitary operators

/I 0 0 O
o [I O v o1 0o o
XN= [0 X] X = TOFFOLI = 0 0 | 0
0 0 0 X
@ Measurement
Mz = Measure in Z eigenbasis My = Measure in X eigenbasis
Clifford Group Universal Set * NAND

B. Eastin Tutorial (http://www.gec14.ethz.ch/abstracts.html)
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|

Definition of Quantum Fault-Tolerance: A guantum circuit is fault-tolerant against t I
tailures if failures in t elements results in at most t errors per code block (group of
qubits corrected together)
Qubit Quantum bit, i.e., a two-state quantum system.
. 2, 142 ..
al0) +B[1)  where [a|" + |3]° =1 In the Circuit Model: All
algorithms are implemented
Gate Discrete operator, typically unitary, e.g. using a discrete sequence of
@ The Pauli operators

gates from the universal set
o 1 -
A= [1 o] "= [i 0]

@ Other single-qubit rotations

o R BT R A T

acting on a set of qubits.

Tolerance, these gates are

e Multi-qubit unitary operators encoded gates acting on
/ 0 O 0 . . .

I 0 0 I 0 o0 logical qubits (i.e., code

= [ X] CCX — TOFFOLI = , .
3 S A blocks of qubits whose
e Measurement state is encoded into the
MZ = Measure in Z eigenbasis MX — Measure in X eigenbasis state Of a l’lumber Of

physical qubits)

With QEC and Fault- I
Clifford Group Universal Set * NAND ‘

B. Eastin Tutorial (http://www.gec14.ethz.ch/abstracts.html)



n | Fault-Tolerant Quantum Computing: Quantum Error Correction

Recall the Classical Repetition Code: 0 = 000, 1 =2 111

Quantum Repetition Code: |Y) = al0) + b|1) > a|000) + b|111)

)
10) E: a|000) + b|111)

0) —D—

0)
|0)

[ 2= +1
b [+

V
Jh\
V
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\J
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JanY

Challenge 1: Quantum data cannot be directly inspected for error
> Measure non-local check operators: Z1Z, and Z,Z5
°> Syndrome: Measurement outcome after measuring the check operators (00, 10, 01, 11)

° Syndrome Decoding: Guessing the location of the errors given the syndrome

B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html)
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Challenge 1: Quantum data cannot be directly inspected for error
> Measure non-local check operators: Z1Z, and Z,Z5
°> Syndrome: Measurement outcome after measuring the check operators (00, 10, 01, 11)

° Syndrome Decoding: Guessing the location of the errors given the syndrome

B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html)
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Recall the Classical Repetition Code: 0 = 000, 1 =2 111
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Challenge 1: Quantum data cannot be directly inspected for error
> Measure non-local check operators: Z1Z, and Z,Z5
°> Syndrome: Measurement outcome after measuring the check operators (00, 10, 01, 11)

° Syndrome Decoding: Guessing the location of the errors given the syndrome

B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html)



5 | Fault-Tolerant Quantum Computing: Quantum Error Correction ?I

Recall the Classical Repetition Code: 0 = 000, 1 =2 111
Quantum Repetition Code: W) = a|0) + b|1) = a]|000) + b|111)
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Challenge 1: Quantum data cannot be directly inspected for error

°> Syndrome: Measurement outcome after measuring the check operators (00, 10, 01, 11)

° Syndrome Decoding: Guessing the location of the errors given the syndrome

Challenge 2: Errors are Continuous: (V1 — 821 + i6X1)|000) = V1 — §2|000) + i§ [100)

> Measuring the check operators discretizes the errors

{0,0} > |000) with probability (1 — §2)

7 measuring
[§) = VI = 52]000) + i8 |100) .
rz and 2223 {1,0} > 100) with probability 52

> Measure non-local check operators: Z1Z, and Z,Z5 I
o

B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html



¢ | Fault-Tolerant Quantum Computing: General Concept
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1. Encode the bare data |1p1) and |y,) into the state of lower-level qubits using Y1),
|12), and a bunch of ancilla qubits

o Create a code block for each |1,b ]-)
o Use a QEC protocol that can correct the errors that are expected to occur

o 'There exists a fault-tolerant implementation of a universal encoded gate set

2. Apply encoded logical gates (Gq , Gy , G3 ...) as needed by the application directly on
the code blocks without decoding

3. Error correct in between logical operations as needed

4. Measure the final state of the logical qubits to extract the answer of the computation



7 | Fault-Tolerant Quantum Computing: General Concept

Y1) — ET — FT

/ // // // // + """ M
0y 1 & [ eEc G QEC >
[Y,) — FT — FT —
7 7 7 7 7 —f— - M
0y 1 & [ eEc G2 QEC

LU LU T
S22 =222 =22

S|
o

10)—
10)—
10)—
10)—
10)—
10)—
10)—

Open Areas of Research are Abound:

1. Many different error correcting protocols to choose from, each with different error
thresholds and resource requirements.

2. For any given code there are many different ways to perform error correction fault-
tolerantly: 1.e., methods for doing syndrome extraction

3. Many different ways to implement encoded gates fault-tolerantly

4. For early devices with limited resources, we need a set of experiments and
characterization protocols that go beyond just algorithm discovery and validation of
concepts but also tell us something about the operation of larger processors.



END OF CETRARO
PRESENTATION

The remainder of the slides will be presented at the
FTQC tutorial in Frankfurt, in addition to the preceding
slides.



s | Fault-Tolerant Quantum Computing: Stabilizer Codes

Stabilizer Commuting group of Pauli products each of which square to
the identity, e.g., Il, XX, =YY, and ZZ

Stabilizer state +1 eigenstate of some stabilizer or a mixture thereof

Stabilizer generator Set of Pauli products that generate a stabilizer under
multiplication, e.g., XX and ZZ

Stabilizer code Code whose check operators can be chosen to be a stabilizer
generator

If A stabilizes |V), (V|ETAE|W) = —1 for any error E s.t. AE = —EA.

Four-qubit error-detecting code

Xi=X3XQIxI

stabilizer [ X@X@X®X Z1=2Q0111Z
generator | Z®ZQRZQRZ X =XololeX

,=20Z18I

Minimum distance The minimum size (in number of qubits affected) of an
undetectable (nontrivial) error, denoted d.

B. Eastin Tutorial (http://www.qec14.ethz.ch/abstracts.html)
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Fault-Tolerant Quantum Computing: Calderbank-Shor-
Steane(CSS) Codes

CSS code Code where the stabilizer generators can be chosen as
either X-type or Z-type Pauli products

Symmetric CSS code CSS code which is symmetric under exchange of X and Z

CSS codes can be constructed from certain pairs of classical codes.

For symmetric CSS codes, qubit-wise application of X, Y, Z, H, X, My, and
Mz are encoded operations.

Seven-qubit Steane error-correcting code

X-type XIXIXIX XXX XXX
stabilizer = I XX | XX )f -
generator [ 11 XXXX L= /777777

A code with minimum distance d can correct errors on any L(d I)J qubits.

If errors E and F are indistinguishable, ETA;E = FTA;F for all stabilizers A;
which implies EFT is an undetectable error.

B. Eastin Tutorial (http://www.qgec14.ethz.ch/abstracts.html)



21 | Fault-Tolerant Quantum Computing: Other Types of Codes

Subsystem code Quantum code that encode more logical qubits than used
LDPC code Quantum code with low-weight stabilizer generators

Topological code Quantum code associated with a topology such that logical
operators correspond to non-trivial topological features and
stabilizer generators have local support

Kitaev's surface code Dennis quant-ph/0110143  Fowler 0803.0272

B. Eastin Tutorial (http://www.qgec14.ethz.ch/abstracts.html)
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Open Areas of Research are Abound:

L

2. For any given code there are many different ways to perform error correction fault-
tolerantly: i.e., methods for doing syndrome extraction



2 | Fault-Tolerant Quantum Computing: Methods for Doing
Syndrome Extraction

General Approach (Applicable to All Methods): Measuring Pauli Operators

0) {HF——HH A
) ——P

With a single ancilla, this 1s not always fault-tolerant. There are different ways to make it
tault-tolerant

A(P) for P= P, ® --- ® P, factors into product of A(F;) operators.

o HH £
Shor Style Error Correction (Shor quant-ph/9605011): ) . i
= Works for all stabilizer codes +) . HHAA
= Simple check operator measurements THAA
= Requires cat states as big as the check operators A1 N7
= TFor FT, O(d) repetitions are required X3 D
s &
X7 4
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General Approach (Applicable to All Methods): Measuring Pauli Operators

0) 4 H T H— A
) # P

A(P) for P= P, ® --- ® P, factors into product of A(F;) operators.

With a single ancilla, this 1s not always fault-tolerant. There are different ways to make it
fault-tolerant

Steane Style Error Correction (Steane quant-ph/9708021):

=  Works for all CSS codes [+) S *

= FEasy logical circuits but requires encoded ancilla states &

S EIEIEIIE
NN INEY N

T

=  Ancillae needs to be verified

= X and Z corrections are done separately

= Requires t+1 repetitions for X and Z corrections
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Syndrome Extraction

General Approach (Applicable to All Methods): Measuring Pauli Operators

0) H i H— A ]

A(P) forP=P, ®---® P, factorsint
Y) —+—P

With a single ancilla, this 1s not always fault-tolerant. There are d

fault-tolerant

00) +11) )
V2

Knill Style Error Correction (Knill quant-ph/0410199):

= Works for all CSS codes

= Logical circuit 1s teleportation

= Requires encoded Bell states: 00+11 '

| | |

N
N

= X and Z errors are corrected at once

)
U

4R
V

= Works well against leakage
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General Approach (Applicable to All Methods): Measuring Pauli Operators

0) {HF——HH A
) ——P

A(P) for P= P, ® --- ® P, factors into product of A(F;) operators.

With a single ancilla, this 1s not always fault-tolerant. There are different ways to make it
fault-tolerant ®

Topological Codes (Fowler quant-ph/1208.0928): :

N
w

©) ® @
= Uses bare ancilla (i.e., no cat states or other encodings) 4 5 ;
= Hrrors spread eracefully throueh carefully schedulin & - 2
p = ¥ £ y = . ; .
= Flag qubits expand the number of topological codes ©)
= Useful for near-term experiments
Z-Check X-Check —e —a
- - Jd R\ \ 4
= — e NP -
sw e 1\ 4
L 2
nw nw ]
0) BB D-D-M. o} {1] M 0} - Db boX b >

-7 |0) 90000000 7
RS Shaitd &
quant-ph/1208.0928 Flag Qubits: quant-ph/1705.02329
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Open Areas of Research are Abound:

L

3. Many different ways to implement encoded gates fault-tolerantly

4.

LD

KD



2 | Fault-Tolerant Quantum Computing: Methods for Encoded
Gates

A unitary gate U 1s a valid encoded gate if U commutes with each of the stabilizer
elements: i.e., For each stabilizer S;, US;U T is a stabilizer

Two methods for fault-tolerantly implementing encoded gates

* Transversal: A gate that acts independently on each physical qubit in a code block

i S —
* Easiest way to achieve FT encoded gates
* A single error in one code block spreads to only one 1) H
error in the other code block \
* Eastin-Knill Theorem (Eastin 0811.4262): Impossible [
to get transversal universal gate set. o
* X, Z, CNOT, Measurement for any stabilizer code I2) H o1
\—————

* Teleportation: A gate is teleported through a “magic-state” ¥) Sly)
ln/2) b 2=

* Combined with transversal gates, can help us achieve
tault-tolerance

[Y) T|y)
e Fault-Tolerant preparation of magic state preparation is
prep s oe b I7/4) %;5

not simple and a very active area of research

Leung: quant-ph/0002039
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Open Areas of Research are Abound:

L

b

4. For early devices with limited resources, we need a set of experiments and
characterization protocols that go beyond just algorithm discovery and validation of
concepts but also tell us something about the operation of larger processors.

> FPor small applications on NISQ devices, ways to mitigate the high errors have been realized

(e.g., Scaled Time Method quant-ph/1803.03326) without error cotrection. These methods,
however, are limited to specific small applications.



