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Overview (il

Sandia fracture modeling capabilities in SIERRA

= Preliminary work
= Geometry
= Model Parametrization

= Element Death
= Phase Field
= S|ERRA / FRANC3D Coupling




Sandia Capabilities m

= SIERRA finite element code (Sandia National Laboratories)
= |Implicit & explicit integration = Robust explicit & implicit contact
= Fully parallelized for clusters, HPC = Verification & Validation
= Finite strain formulation = Multiphysics solutions

= Brittle Failure Strategies in SIERRA:

— Element Death Production
XFEM Production / Development
Peridynamics Research
RKPM Research
Cohesive Elements Production
Localization Elements Production
- Phase Field Research
—> FRANC3D Coupling Production




Geometry

=  Geometry:
= Nominal geometry

= Use nominal dimensions:
— Specimen: 140 mm x 70 mm x 10 mm
— Hole: 30 mm diameter, 25 mm off-center

— Notch: 35 mm long from hole center, 30° from X axis

= Use provided imagery: Source Imagery

— Threshold at at critical gray value
— Measure notch width: estimated 1mm wide

= Sculpted geometry
= SCULPT (Sandia) — meshes voxelized imagery
= Input: thresholded image, background mesh(without hole, crack)
= More expensive, but more accurate

= Meshing

= Several mesh densities of each

=  Boundary conditions: w

= Left — fixed X, fixed Y
= Right — prescribed displacement X (0.1 mm/min), fixed Y

Nominal Geometry,
= Back (symmetry) — fixed Z BCs highlighted 4




Geometry

=  Geometry:
=  Processing flow-chart:
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Model Parametrization 8
= Model parametrization
= Provided data from benchmark specification (Young’s modulus, Poisson’s ratio)
= Online references (density, fracture strength)
= Post-processing of provided data (toughness / fracture energy G)
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ELEMENT DEATH
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Element Death

=  Approach:
= Kill elements when maximum principal stress exceeds critical value: a; > o,
= Concerns:
= Mesh sensitivity: crack propagation length & direction, energy dissipation, stability
= Results:
Coarse \/‘ » Element death does decently at capturing the
crack path

= Still evidence of mesh dependence in crack
length & direction

Medium = Perhaps the global stability of the problem
) (monotonic F/D even with crack) assists here

Experimental Result

e \/‘ w
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Phase Field @

=  Qverview of approach:
= Solve fracture problem by minimizing global energy functional
=  Approximate surficial fracture energy with volumetric energy
Y= [,9do= [ P(®)dQ+ [.G.dTl > [, g()Pe(e®) + f(c, Ve, )G, dQ
= T-convergent: expressions equivalent in limit { = 0%
= Similar formulation to gradient-damage model

)

Damage caused by Geometry for phase field model with
stress conc. at BC unbreakable blocks
3G,

* Threshold model, “AT-1": Yrac = 2 i (1 — ) + PIVCl? ), Yerie = 15

= Details:
= Phase field fracture model:

= Model parametrization

2
= Set Y.t & I based on tensile failure strength (o, = 50 MPa ): Y iy = ;—Z, -1l = 386(;765

= |nserting “unbreakable” blocks at boundary conditions

10




Phase Field m

=  Details (continued):
= Mixed-mode fracture — only want tensile components to contribute to damage

= Typically, full strain energy considered: { = %aijeij = %tr(e)z + utr(e?)

= Consider other energy decompositions: ¥ = fn 9P ace + Ppas + fc, Ve, DG, dQ

= Other energy decompositions implemented for this benchmark

_

Full —tr(e)2 + u tr(e?) g(©)(Atr(e)l + 2ue)
A 2 2 A 2 2
- Spectral Etr(e+) + utr(es?) Etr(e_) + utr(e_?) g QAtr(e ) + 2ue,) + (Atr(e_)I + 2ue_)

Volumetric/ A 2 A 2
Deviatoric 2 tr(evor+)” + 1 tr(egev”) 2 tr(€vor,-) 9@ (Atr (epor+ )1 + 2ueaey) + Atr (e~ )]
Volumetric/

o A 2 o 2 ) 9(©)(Atr(epor+ )T + 2Ugen,+)
Deviatoric 5 tT(Svol,_l_) +u tT(EdeU'+ ) 2 tr(evol,_) +u tT(Sdev,_ ) + (/,{tr (Svol,_)l 4 Z,uedev,_)

Spectral
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Phase Field i

= Preliminary results: SIERRA WMOOSE

= Full energy does not crack in correct
direction (expected)

Full
= Spectral decompositions crack in
correct direction (expected)
Strain
Spectral
Max. Principal Stress Von Mises Stress
Vol-Dev
Triaxiality Vol-Dev
Spectral
= Performed qualitative verification
by comparing to MOOSE framework
= Same trends for all energy decompositions
= Results do differ slightly in magnitude:
— SIERRA & MOOSE have different solution schemes: staggered vs. monolithic 12




Phase Field (0

= Results:

= Best answer (volumetric/deviatoric spectral, overloaded)
= Predicts tensile crack development, but also has cracks growing from hole
= Notched crack grows in correct direction, but not far enough

= Force/displacement plot much more linear
— Stiffness does decrease with damage growth, but much later

Force vs. Displacement

— Experimental ~
8000 Simulation ,//

Experimental Result
= Takeaways:

" More work needed! w

= Alternative selection of length scale?

= Eager to learn best practices 13




SIERRA / FRANC3D
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SIERRA / FRANC3D @

=  Qverview of approach:
= Discrete fracture representation

= Coupling of SIERRA (Sandia) & FRANC3D (Fracture Analysis Consultants, Inc.)
= SIERRA handles solid mechanics solve
= FRANC3D performs mesh cutting & remeshing
= FRANC3D uses “M-integral” calculate stress intensity factors
= FRANC3D uses SIFs to compute crack extension distance & direction

= Details:

= Solution in multiple steps. In each:

= Compute physics (entire displacement)
= Compute SIFs
= Update geometry
= Fatigue-like formulation
= Solved in linear fashion

= Crack growth proportional to
SIF magnitudes: Aa ~ K?

~A

= SIF ratios = crack growth direction

\ . w Y
lllustration of FRANC3D mesh template placed at
= No concept of Kj.; no effort to ensure crack tip

that K; < K, at all points (nonlinear) 15




Displacement correlation methods with 1/4-point elements () & _

SIERRA / FRANC3D

i wrer = Viower = 30V, =V ) V=V T +[A(v, = v, )+ 2(v, -V )5
= Qverview of approach: Vo Vi =100, =) 90V B, =)+ 200, - )

*
. . ™ Evaluate
= Details of mesh template & SIF calculation Kl o ,0
= —’[—} sin —[2 —-2v—cos” —}
o2 2 2
for @ =+180"
: i — : o 2K, [
Meshing considerations: Elements used in the crack model () i Vagper — Viewer = 7: ‘-'IE @-2v)
» quarter-point singular wedge crack-front elements . e Solve for K;
\ (reproduces singularity) Opt|on 1 e
tetrahedral elements are used o 2,U 27 [4(‘, -V ) +V.,—V ]
for the bulk of the volume // 1 JE (2 - 2V) b d & c
mesh
“ a‘-‘ John Emery, imeme Computational Methods for
’ 7 ) \ The J-Integral (2-D): Area Version OE
Laboratones
‘4 two or mare “rings” 0
pyramids enforce compatibility between brick B heEiet
and tetrahedral elements
The crack front template (wedge, hex elements) is necessary for X,
smooth calculations of the driving force (M-Integral)
John Emery, jmemery@sandia.gov Computational Methods for LEFM 29
Option 2
- 1] oy d
J=_[ o, LW, | 44
A7 o Ox,

of integration. Physically, g can be thought of as the displacement field due to a virtual
crack extension.

16
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SIERRA / FRANC3D

=  Qverview of approach:
=  Details of crack extension & direction calculation:

Fatigue crack propagation Q=S The “T” stress is the second term of the crack-tip stress () i,
expansion
2 Ip
= Crack propagation can occur when K, < K,. — so called sub-critical crack a; 1 Ky (] +sin”(A6/2 1] +3 Kyysin(A6) - 2K}y tan(A6/2) - 1+ cos(2A6)
growth ey Kpcos™ (A8/2) -3 Kyysin(AQ) +311-cos(246)
= Mechanical fatigue is an example of sub-critical crack growth love ) I K sin(A@) - Ky (3 cos(A8) -1) I | -sin(2a6)

The maximum hoop stress expression then becomes:

= NASCRD Paris law
-- modified L
da K, -2sin(A0/2)[ A8 8T 1
= ° otest data o S\ =l ———1= o5 — = —— . f2;7, cos AB
e Iy = C(AK) K, " 3cosAf-1 | 2 3K, VT
=
E NASGRO equation Where r, is the distance from the crack tip at
Z 109 da (1 _ Mul')p which the stresses are computed.
) — = C(AKy ) ~—AE L
= ° dN (AKers) (l -~ Km“) J r. scales with the plastic zone size.
Ke
r. for plastic tearing is theorized to be a material

10 T
¢ R 10 1/2, e constant.
AK (MPa(m) ")
Kosai, Kobayashi, and Ramulu, “Tear straps in aircraft fuselage,” Durobility of metal aircraft structures: proc. of
international workshop on structural integrity of aging airplanes, Atlanta, GA, pp. 443-457, 1992

John Emery, jmemery@sandia.zov Computational Methods for LEFM 54 John Emery, imemery@sandia.gov Computational Methods for LEFM 48
Crack extension compute as fatigue crack Crack direction determined by minimizing hoop
a
stress gy: aiee =apg =0

17



SIERRA / FRANC3D

= Strategy:
= Geometry:

* Nominal geometry & zero-thickness pre-crack

= Analysis:
= Total Lagrange quadratic Tet1l0 elements
= Apply quasistatic displacement of 1 mm

= Analyze over many steps, until crack extension
becomes “sufficiently small”

= 13 steps in this case, could go further

=  Post-Processing:

* K. correction:
- 0 & K; linear functions of applied displacement
— Assume that the crack extends at K; = Kj,
— Scale simulation displacement (1 mm) by
%C ratio to estimate actual displacement

required to reach K; = K,

_ ch
Ugctual = K Usimulation
I,simulation

Initial Mesh — nominal geometry with zero-
thickness crack

Initial Mesh — close-up of zero-thickness crack and
crack tip mesh template 18
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SIERRA / FRANC3D

= Results:
ﬁ_ = - / Experimental Result
\ N
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Mesh Evolution Maximum Principal Stress Evolution

= FRANC3D does well at capturing experimental crack path

= Might get even better result with smaller steps, additional steps, and mesh refinement 19



SIERRA / FRANC3D @

=  Results:

= Quantitative comparisons to experimental data, post-processed
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= FRANC3D does well at capturing experimental crack path
= Stress intensity factors are similar

= Crack length vs. applied displacement matches less well, but this is based on post-
. K .
processing (f scaling)
1
» Force/displacement comparison not (yet) available

= Might get even better result with smaller steps, additional steps, and mesh refinement 20




Thank you! m

Thanks to conference & benchmark organizers!
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