

Sandia Fracture Models for Mixed-Mode Brittle Fracture

A. Stershic, M. Stender, S. Grutzik

Sandia National Laboratories

CFRAC 2019; Braunschweig, DE; June 12-14, 2019

Overview

- Sandia fracture modeling capabilities in SIERRA
- Preliminary work
 - Geometry
 - Model Parametrization
- Element Death
- Phase Field
- SIERRA / FRANC3D Coupling

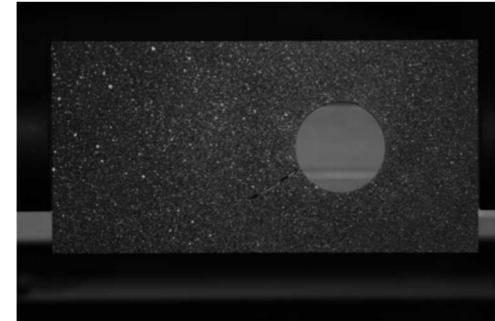
Sandia Capabilities

- SIERRA finite element code (Sandia National Laboratories)
 - Implicit & explicit integration
 - Fully parallelized for clusters, HPC
 - Finite strain formulation
 - Robust explicit & implicit contact
 - Verification & Validation
 - Multiphysics solutions
- Brittle Failure Strategies in SIERRA:

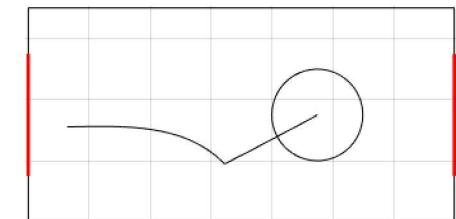
Capability	Status
→ Element Death	Production
XFEM	Production / Development
Peridynamics	Research
RKPM	Research
Cohesive Elements	Production
Localization Elements	Production
→ Phase Field	Research
→ FRANC3D Coupling	Production

Geometry

- **Geometry:**
 - **Nominal geometry**
 - Use nominal dimensions:
 - Specimen: 140 mm x 70 mm x 10 mm
 - Hole: 30 mm diameter, 25 mm off-center
 - Notch: 35 mm long from hole center, 30° from X axis
 - Use provided imagery:
 - Threshold at critical gray value
 - Measure notch width: estimated 1mm wide
 - **Sculpted geometry**
 - SCULPT (Sandia) – meshes voxelized imagery
 - Input: thresholded image, background mesh (without hole, crack)
 - More expensive, but more accurate
 - **Meshing**
 - Several mesh densities of each
- **Boundary conditions:**
 - Left – fixed X, fixed Y
 - Right – prescribed displacement X (0.1 mm/min), fixed Y
 - Back (symmetry) – fixed Z



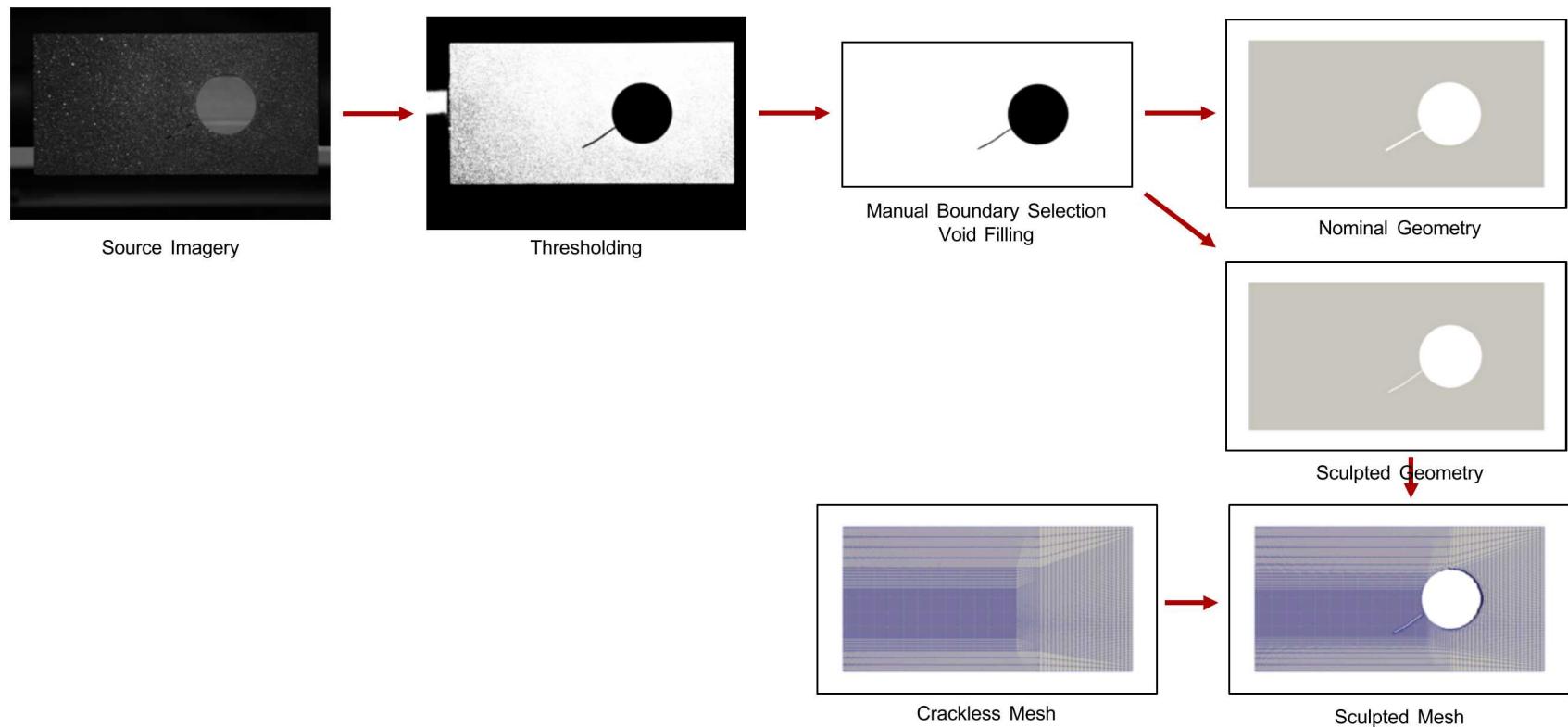
Source Imagery



Nominal Geometry,
BCs highlighted

Geometry

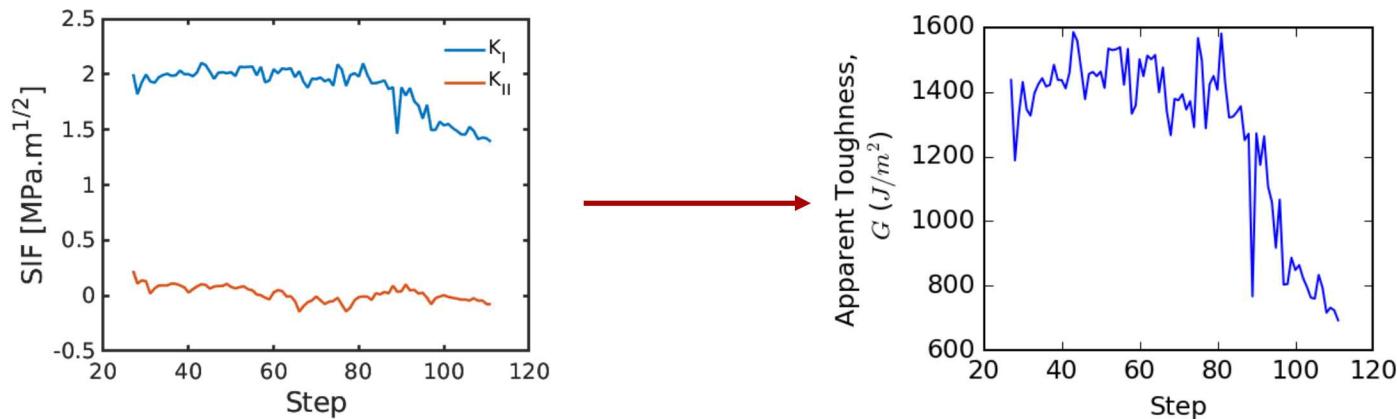
- Geometry:
 - Processing flow-chart:



Model Parametrization

- Model parametrization
 - Provided data from benchmark specification (Young's modulus, Poisson's ratio)
 - Online references (density, fracture strength)
 - Post-processing of provided data (toughness / fracture energy G_c)

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} \text{ where } E' = \frac{E}{1-\nu^2}$$



→ Estimate $G_c \approx 1400 \text{ J/m}^2$

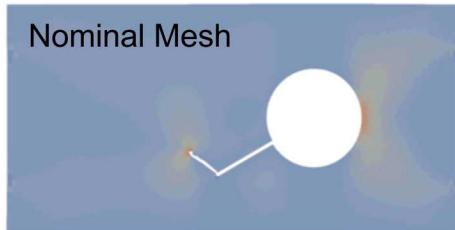
ELEMENT DEATH

Andrew Stershic

Element Death

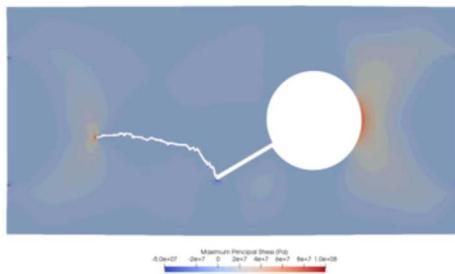
- Approach:
 - Kill elements when maximum principal stress exceeds critical value: $\sigma_I > \sigma_c$
- Concerns:
 - Mesh sensitivity: crack propagation length & direction, energy dissipation, stability

Coarse



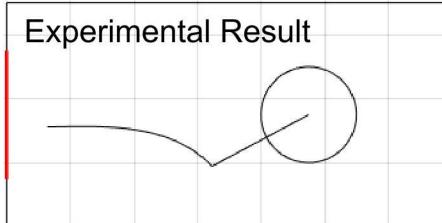
Medium

Fine



- Results:

- Element death does decently at capturing the crack path
- Still evidence of mesh dependence in crack length & direction
- Perhaps the global stability of the problem (monotonic F/D even with crack) assists here



PHASE FIELD

Andrew Stershic

Michael Stender

Brandon Talamini

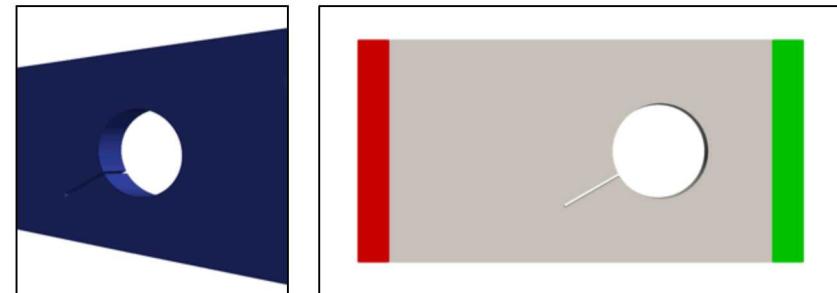
Phase Field

- Overview of approach:

- Solve fracture problem by minimizing global energy functional
- Approximate surficial fracture energy with volumetric energy

$$\Psi = \int_{\Omega} \psi \, d\Omega = \int_{\Omega} \tilde{\psi}^e(\varepsilon^e) \, d\Omega + \int_{\Gamma} G_c \, d\Gamma \rightarrow \int_{\Omega} g(c) \tilde{\psi}^e(\varepsilon^e) + f(c, \nabla c, l) G_c \, d\Omega$$

- Γ -convergent: expressions equivalent in limit $l \rightarrow 0^+$
- Similar formulation to gradient-damage model



- Details:

- Phase field fracture model:

- Threshold model, "AT-1": $\psi_{frac} = 2\psi_{crit}((1 - c) + l^2|\nabla c|^2)$, $\psi_{crit} = \frac{3G_c}{16l}$

Damage caused by
stress conc. at BC

Geometry for phase field model with
unbreakable blocks

- Model parametrization

- Set ψ_{crit} & l based on tensile failure strength ($\sigma_c \approx 50 \text{ MPa}$): $\psi_{crit} = \frac{\sigma_c^2}{2E} \rightarrow l = \frac{3G_c E}{8\sigma_c^2}$

- Inserting "unbreakable" blocks at boundary conditions

- Prevents damage that arises due to idealization of boundary conditions

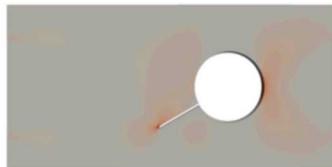
Phase Field

- Details (continued):
 - Mixed-mode fracture – only want tensile components to contribute to damage
 - Typically, full strain energy considered: $\tilde{\psi} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} = \frac{\lambda}{2} \text{tr}(\varepsilon)^2 + \mu \text{tr}(\varepsilon^2)$
 - Consider other energy decompositions: $\Psi = \int_{\Omega} g(c) \tilde{\psi}_{act} + \tilde{\psi}_{pas} + f(c, \nabla c, l) G_c \, d\Omega$
 - Other energy decompositions implemented for this benchmark

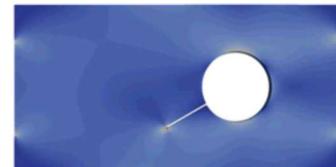
Decomposition	$\tilde{\psi}_{act}$	$\tilde{\psi}_{pas}$	σ
Full	$\frac{\lambda}{2} \text{tr}(\varepsilon)^2 + \mu \text{tr}(\varepsilon^2)$	0	$g(c)(\lambda \text{tr}(\varepsilon)I + 2\mu\varepsilon)$
→ Spectral	$\frac{\lambda}{2} \text{tr}(\varepsilon_+)^2 + \mu \text{tr}(\varepsilon_+^2)$	$\frac{\lambda}{2} \text{tr}(\varepsilon_-)^2 + \mu \text{tr}(\varepsilon_-^2)$	$g(c)(\lambda \text{tr}(\varepsilon_+)I + 2\mu\varepsilon_+) + (\lambda \text{tr}(\varepsilon_-)I + 2\mu\varepsilon_-)$
Volumetric/ Deviatoric	$\frac{\lambda}{2} \text{tr}(\varepsilon_{vol,+})^2 + \mu \text{tr}(\varepsilon_{dev}^2)$	$\frac{\lambda}{2} \text{tr}(\varepsilon_{vol,-})^2$	$g(c)(\lambda \text{tr}(\varepsilon_{vol,+})I + 2\mu\varepsilon_{dev}) + \lambda \text{tr}(\varepsilon_{vol,-})I$
→ Volumetric/ Deviatoric Spectral	$\frac{\lambda}{2} \text{tr}(\varepsilon_{vol,+})^2 + \mu \text{tr}(\varepsilon_{dev,+}^2)$	$\frac{\lambda}{2} \text{tr}(\varepsilon_{vol,-})^2 + \mu \text{tr}(\varepsilon_{dev,-}^2)$	$g(c)(\lambda \text{tr}(\varepsilon_{vol,+})I + 2\mu\varepsilon_{dev,+}) + (\lambda \text{tr}(\varepsilon_{vol,-})I + 2\mu\varepsilon_{dev,-})$

Phase Field

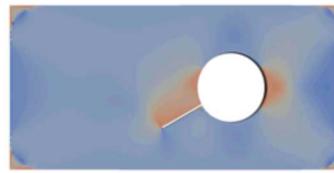
- Preliminary results:
 - Full energy does not crack in correct direction (expected)
 - Spectral decompositions crack in correct direction (expected)



Max. Principal Stress

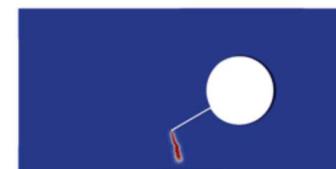


Von Mises Stress

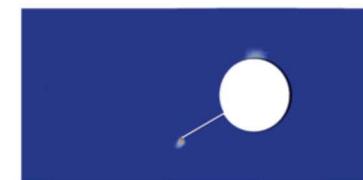


Triaxiality

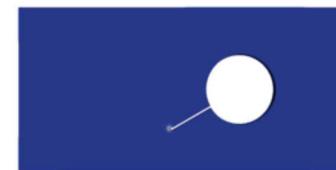
SIERRA



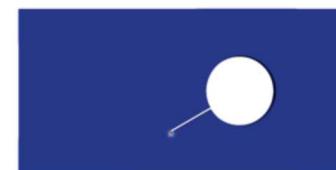
MOOSE



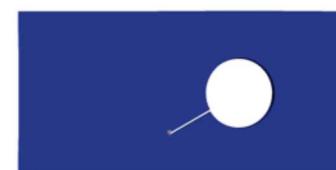
Full



Strain
Spectral



Vol-Dev



Vol-Dev
Spectral

- Performed qualitative verification by comparing to MOOSE framework

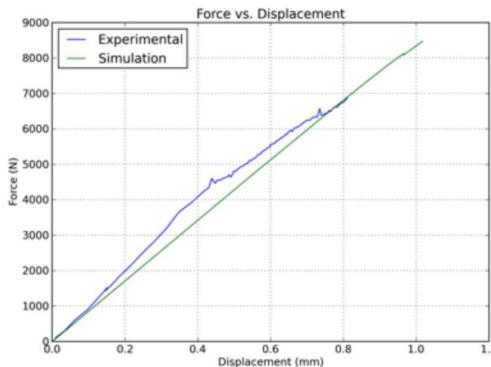
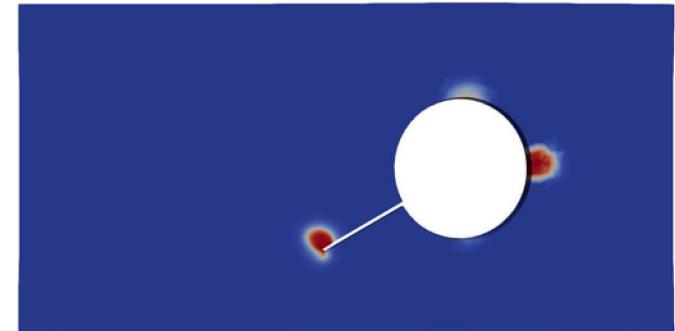
- Same trends for all energy decompositions
- Results do differ slightly in magnitude:

– SIERRA & MOOSE have different solution schemes: staggered vs. monolithic

Phase Field

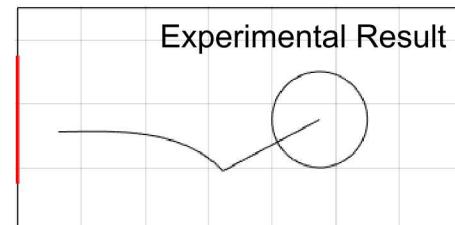
- Results:

- Best answer (volumetric/deviatoric spectral, overloaded)
 - Predicts tensile crack development, but also has cracks growing from hole
 - Notched crack grows in correct direction, but not far enough
 - Force/displacement plot much more linear
 - Stiffness does decrease with damage growth, but much later



- Takeaways:

- More work needed!
- Alternative selection of length scale?
- Eager to learn best practices



SIERRA / FRANC3D

Scott Grutzik

John Emery

<http://www.fracanalysis.com> (FRANC3D)

SIERRA / FRANC3D

- Overview of approach:
 - Discrete fracture representation
 - Coupling of SIERRA (Sandia) & FRANC3D (Fracture Analysis Consultants, Inc.)
 - SIERRA handles solid mechanics solve
 - FRANC3D performs mesh cutting & remeshing
 - FRANC3D uses “M-integral” calculate stress intensity factors
 - FRANC3D uses SIFs to compute crack extension distance & direction
- Details:
 - Solution in multiple steps. In each:
 - Compute physics (*entire displacement*)
 - Compute SIFs
 - Update geometry
 - Fatigue-like formulation
 - Solved in linear fashion
 - Crack growth proportional to SIF magnitudes: $\Delta a \sim K_I^2$
 - SIF ratios → crack growth direction
 - No concept of K_{IC} ; no effort to ensure that $K_i \leq K_{ic}$ at all points (nonlinear)

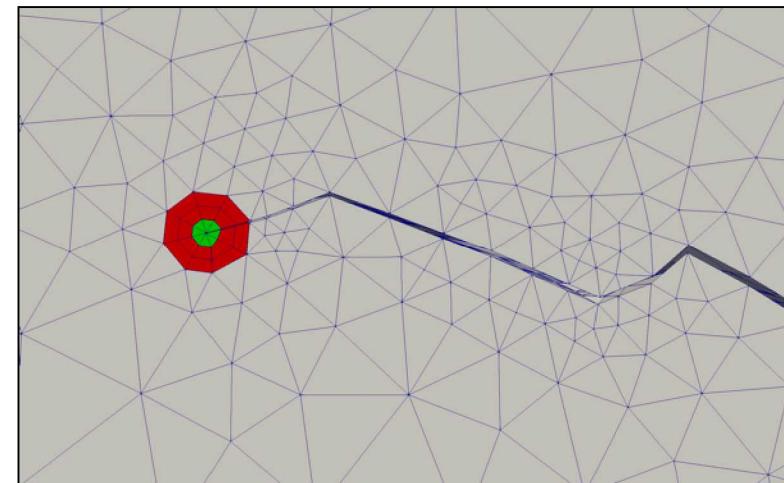
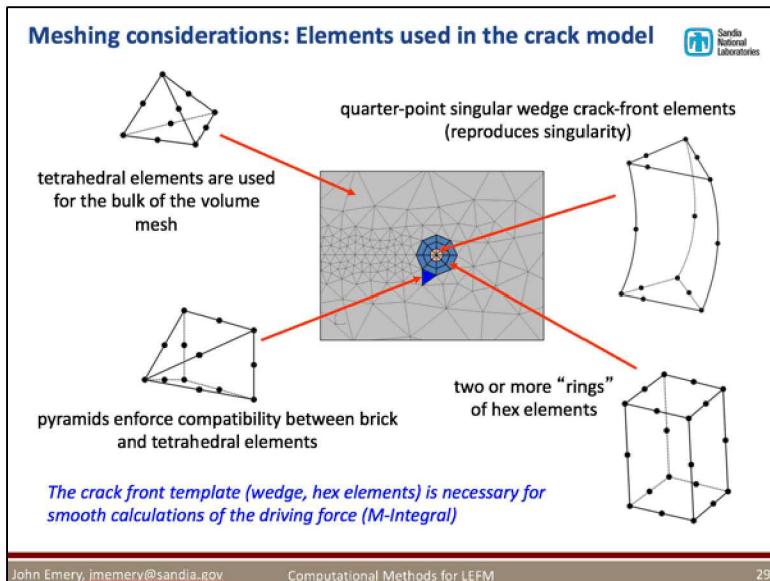


Illustration of FRANC3D mesh template placed at crack tip

SIERRA / FRANC3D

- Overview of approach:
 - Details of mesh template & SIF calculation



Option 1

Displacement correlation methods with 1/4-point elements

$$v_{upper} - v_{lower} = [4(v_b - v_d) + v_e - v_c] \sqrt{\frac{r}{l}} + [4(v_b - v_d) + 2(v_c - v_e)] \frac{r}{l}$$

Evaluate

$$v = \frac{K_L}{\mu} \left[\frac{r}{2\pi} \right]^{1/2} \sin \frac{\theta}{2} \left[2 - 2\nu - \cos^2 \frac{\theta}{2} \right]$$

for $\theta = \pm 180^\circ$

$$v_{upper} - v_{lower} = \frac{2K_L}{\mu} \sqrt{\frac{r}{2\pi}} (2 - 2\nu)$$

Solve for K_I

$$K_I = \frac{2\mu\sqrt{2\pi}}{\sqrt{l}(2-2\nu)} [4(v_b - v_d) + v_e - v_c]$$

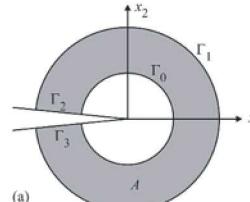
John Emery, jmemery@sandia.gov

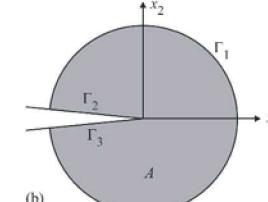
Computational Methods for LEFM

27

Option 2

The J-Integral (2-D): Area Version

(a) 

(b) 

$$\bar{J} = \int_A \left[\sigma_{ij} \frac{\partial u_i}{\partial x_j} - W \delta_{ij} \right] \frac{\partial q_j}{\partial x_i} dA$$

where δ is the Kronecker delta and q is a weighting function defined over the domain of integration. Physically, q can be thought of as the displacement field due to a virtual crack extension.

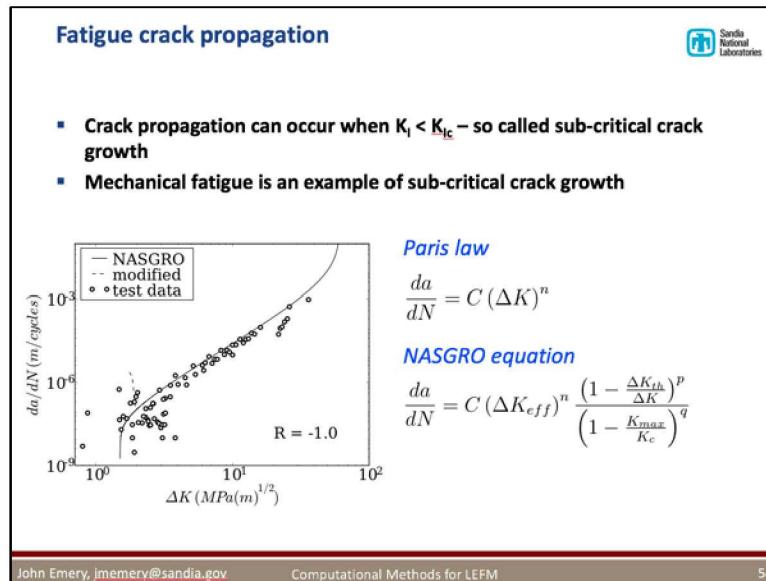
John Emery, jmemery@sandia.gov

Computational Methods for LEFM

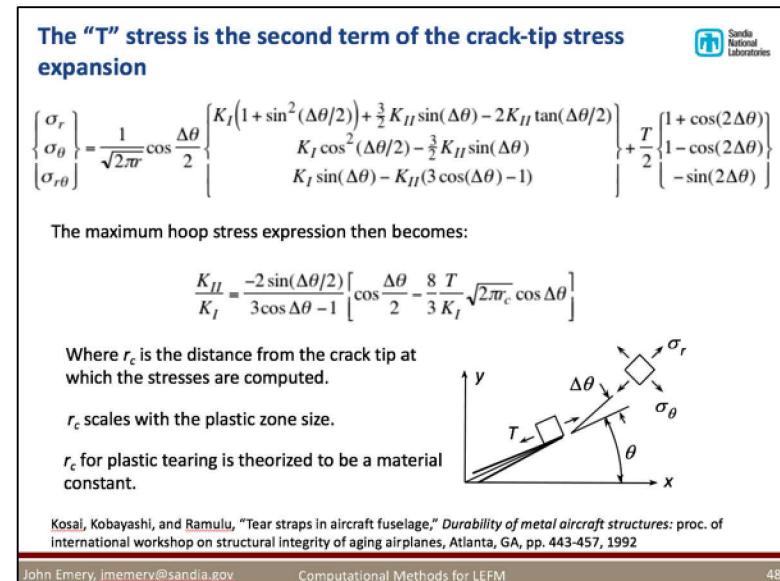
34

SIERRA / FRANC3D

- Overview of approach:
 - Details of crack extension & direction calculation:



Crack extension compute as fatigue crack

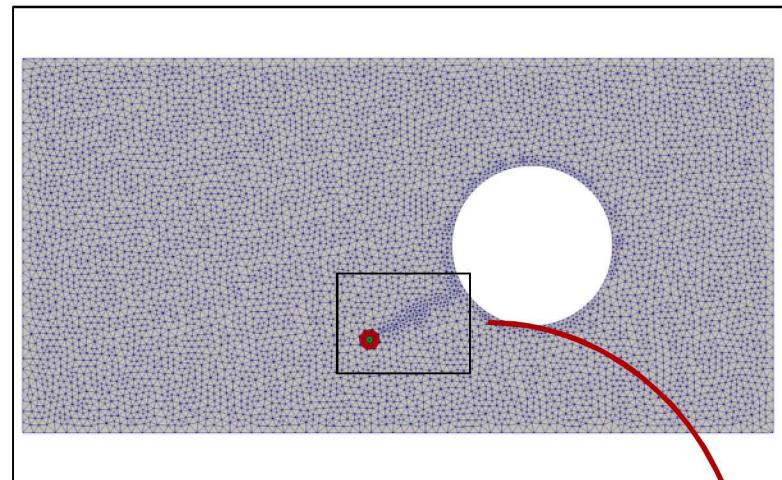


Crack direction determined by minimizing hoop stress σ_θ : $\frac{\partial \sigma_\theta}{\partial \theta} = \sigma_{r\theta} = 0$

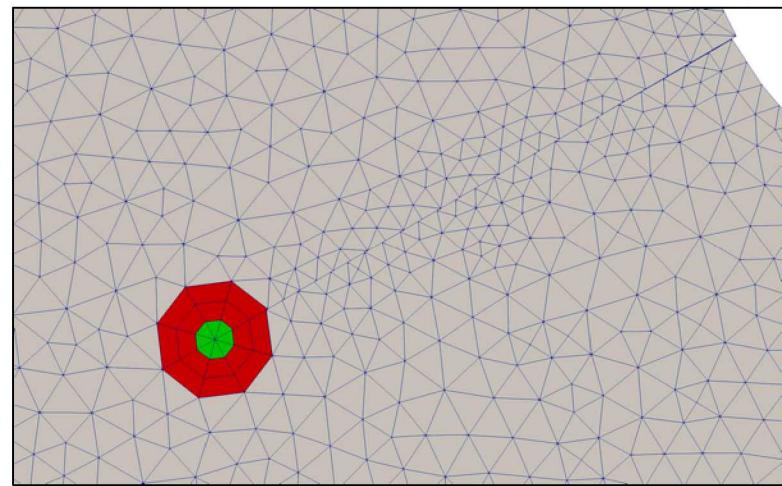
SIERRA / FRANC3D

- Strategy:
 - Geometry:
 - Nominal geometry & zero-thickness pre-crack
 - Analysis:
 - Total Lagrange quadratic Tet10 elements
 - Apply quasistatic displacement of 1 mm
 - Analyze over many steps, until crack extension becomes “sufficiently small”
 - 13 steps in this case, could go further
- Post-Processing:
 - K_{Ic} correction:
 - σ & K_i linear functions of applied displacement
 - Assume that the crack extends at $K_I = K_{Ic}$
 - Scale simulation displacement (1 mm) by $\frac{K_{Ic}}{K_I}$ ratio to estimate actual displacement required to reach $K_I = K_{Ic}$

$$u_{actual} = \frac{K_{Ic}}{K_{I,simulation}} u_{simulation}$$



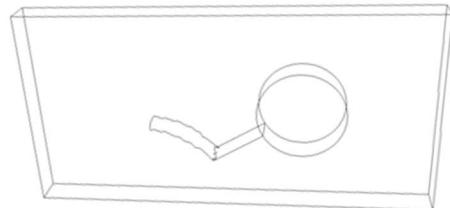
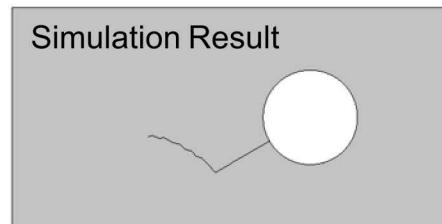
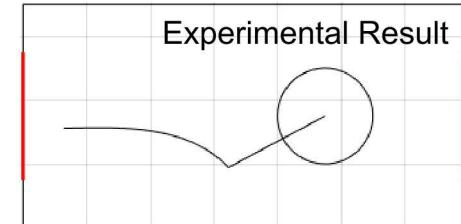
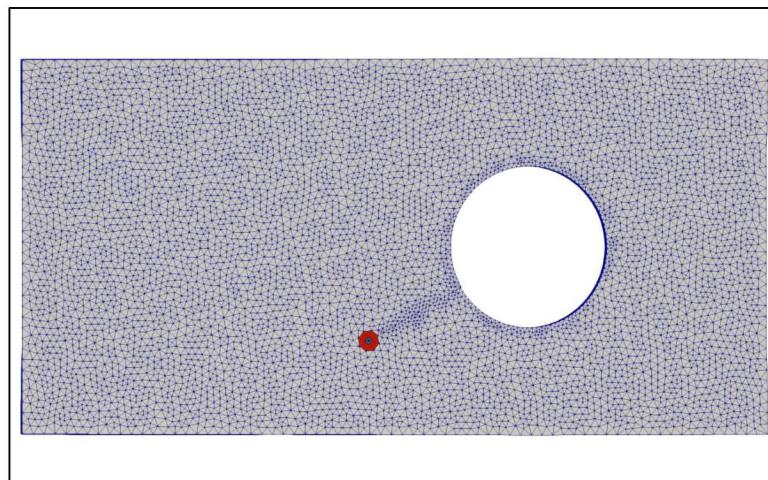
Initial Mesh – nominal geometry with zero-thickness crack



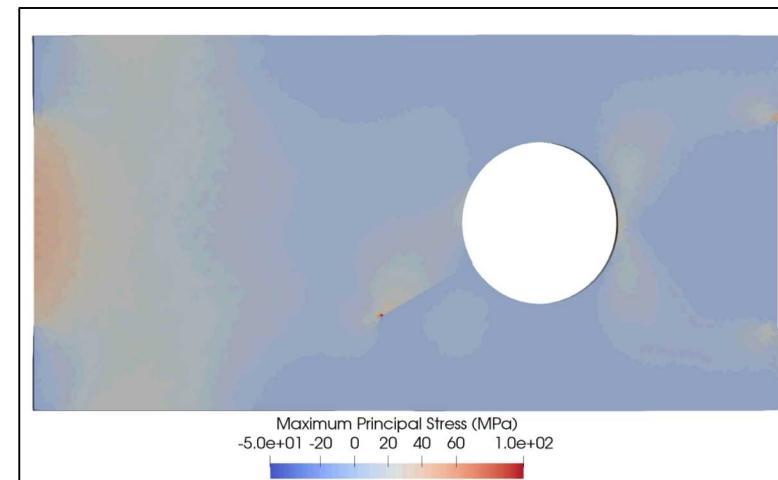
Initial Mesh – close-up of zero-thickness crack and crack tip mesh template

SIERRA / FRANC3D

- Results:



Mesh Evolution

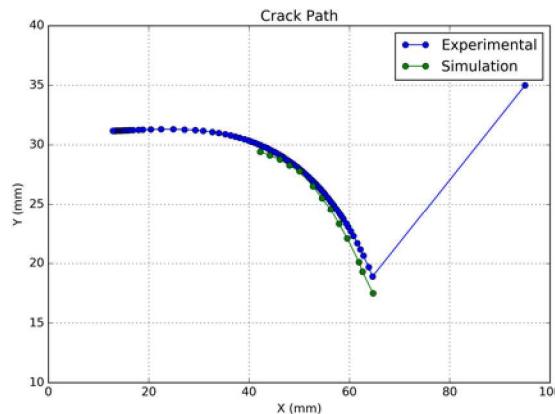
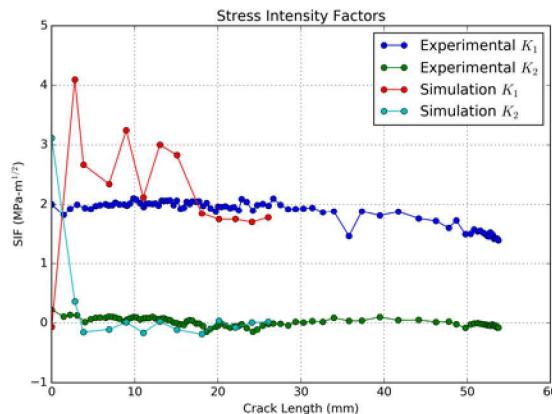
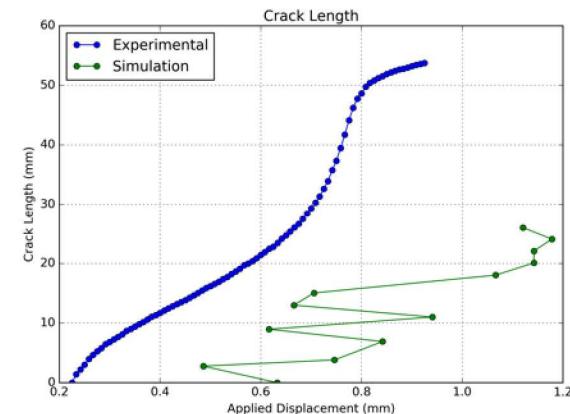


Maximum Principal Stress Evolution

- FRANC3D does well at capturing experimental crack path
- Might get even better result with smaller steps, additional steps, and mesh refinement

SIERRA / FRANC3D

- Results:
 - Quantitative comparisons to experimental data, post-processed



*estimated using $\frac{K_{Ic}}{K_I}$ scaling

- FRANC3D does well at capturing experimental crack path
- Stress intensity factors are similar
- Crack length vs. applied displacement matches less well, but this is based on post-processing ($\frac{K_{Ic}}{K_I}$ scaling)
- Force/displacement comparison not (yet) available
- Might get even better result with smaller steps, additional steps, and mesh refinement

Thank you!

Thanks to conference & benchmark organizers!

Andrew Stershic, PhD PE
Sandia National Laboratories
Multi-Physics Modeling & Simulation
Livermore, CA
ajsters@sandia.gov