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Phase field approach to fracture UL

= Cracks represented as smeared field

Miehe et al (2011)

oB oB

a) sharp crack b) diffusive crack
= Advantages: no sharp discontinuities, naturally captures arbitrary crack
paths, branching, merging

=  Genesis in linear elastic brittle fracture

= Approaches for ductile failure have started appearing and are under

development
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SIERRA Code & Objectives ) S,
BB

Stershic, SAND2018-4988C
=  S|ERRA finite element code

= Developed by Sandia National Laboratories

= Implicit & explicit time integration, Quasistatic & Dynamic

= Fully parallelized for clusters, HPC

= Finite strain formulation by default

= Robust explicit & implicit contact

= Constant verification & validations efforts, experimental comparisons
= Multiphysics: thermal, electrical, chemical, etc.

= QObjectives:
= Implement ductile phase field model in SIERRA
= Modular: can be coupled with any plasticity model
= Computationally efficient
= Capable with implicit and explicit time integration
= Convergent: high model credibility from verification & validation



Phase Field Formulation )=,

= Phase Field fracture concept:
Y = fﬂw,b EIQ = fﬂlﬁe(e‘i) + PP (eP)dQ + fr G.dr
> [, 9(Pe(e®) + h(c)PP(eP) + f(c, Ve, DG, dQ
= Fracture energy: volumetric expression replaces surface energy functional
= [-convergent: expressions equivalent in limit { - 0%

= (Classical, AT-2
- ~ G
P =c? (z,be(ee) + wp(ep)) + 4—;((1 — )2 + 412|Vc|?)
= Threshold, AT-1
P =2« ($°(e°) + PP (")) + 29 (1 — ©) + 12|V ?)
= Damage only grows after critical energy condition reached, only in neighborhood of cracks

= Drawbacks:
= (Classical) Damage from any loading, even distant from stress concentration
= Damage irreversibility not intrinsic to mathematical formulation

= |nterpretation of length scale —is infinitesimal [ required?
= What about critical stress?

= What about mesh resolution?
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Phase Field Implementation

Classical (AT-2) & Threshold (AT-1) models implemented in common
framework:
= Euler-Lagrange equations derived by variational derivative of energy functional

Stationary
Functional

Damaged
Mechanical Splve Phase Field Solve

VA, O

Euler-
Lagrange:

(2—1/)1 + 1) c—1Ac=1 Classical
Ge

max( v ,1) c—2012Ac¢ =1 Threshoid
1/)critt

Phase-field solve accomplished using a linear reaction-diffusion solver
= General form: Rc—DAc =S5



Phase Field Implementation ) .

= Damage irreversibility

= Maximum driving energy history field, H = mflxgﬁ

= Easyto implement
= Deviation from Variational Consistency

Phase Field Solve

21 2H1
Classical v +1)c—-13Ac=1 > +1)c—1Ac=1
G Ge
- 2 2
Threshold max ,1)c—212Ac=1 > max ,1)c—212Ac =1
crit lpcrit

+1>c—212Ac= 1

il —
lpcrit "

= Augmented Lagrangian approach using Inequality-constrained PDE solve
= Difficult to implement in Sierra framework, but interested to explore



Sandia
Phase Field Implementation ) e
=  Coupling scheme:
= QOptions: monolithic —or- staggered solution scheme (“alternate minimization”)
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= |mplemented mechanics/PF staggered solution

= No easy access in SIERRA to implement monolithic solve

= |nitially, no iteration of mechanics/PF solve within timestep

= Lack of iteration leads to acceptance of unconverged solutions at each time step
= Leads to strong temporal sensitivity, toughness overpredicted



Recent Efforts

=  Coupling scheme:

"= Implement iteration between Mechanics & PF solves within timestep

—| PF

th+1 /

Coupled Solve
Schematic

Force

.030. .040.1 .050.1
Displacement

-+-F - Control RxnDiff
= -analyticForce
~F - Uncoupled

= Solve mechanics, solve damage, compute M residual

= Convergence metric: mechanical residual < tolerance

=  Better metric?

= Phase field solve = linear system —> trivial PF residual
= Combined energy residual?

= Phase field relative residual between iterations?
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Recent Efforts L

=  Coupling scheme:

"= Implement iteration between Mechanics & PF solves within timestep
= Spatial convergence:
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Recent Efforts ) =

=  Coupling scheme:
* |mplement iteration between Mechanics & PF solves within timestep
= Temporal convergence:
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Recent Efforts

=  Coupling scheme:

Implement iteration between Mechanics & PF solves within timestep

Spatially convergent v/
Temporally convergent v/

When the crack is growing, convergence is poor & slow
Loose tolerances needed for “convergence” & timestep completion

Tighter tolerances can’t always be reached with 100 iterations, even with timestep
refinement

Consequence of using ‘alternate minimization’?
= Solving without benefit of off-diagonal terms
Consequence of using history variable?
= Corrupted usage of variational principle, energies no longer consistent



Model Validation

4.0r

Experimental test data, compact tension specimen:

Experiment partner: Chris San Marchi (Sandia)
Al 6061-T651
Force/displacement, J-R curves
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- Seek to compare model to experimental data
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Model Validation ) e

=  Parametrizations:
= Elasticity & Plasticity — calibrated from tensile specimen

= Fracture:
= Toughness G. = 12 kJ/m? from Matweb (corresponds to experimental J,)

= Length scale chosen arbitrarily for plastic response, 1 .,;; = 41/3(03,)
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= Validation caveats

=  Geometry is 3-D but plane strain = need to allow for thickness-direction deformation
= More thoughtful selection of length scale needed
= 3-D geometry needs to have side grooves added

- more work to be done!




Model Validation ) e

= Parametrizations:
= Elasticity & Plasticity — calibrated from tensile specimen

= Fracture:
= Toughness G. = 12 kJ/m? from Matweb (corresponds to experimental J,)

= Length scale chosen arbitrarily for plastic response, 1 .,;; = 41/5(03,)
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From Sun & Jin,

= Validation caveats .
=  Geometry is 3-D but plane strain = need to allow for thickness-direction deformation
= More thoughtful selection of length scale needed
= 3-D geometry needs to have side grooves added

- more work to be done!




Addressing Plasticity )&=,

= Plasticity & length scales:
= The addition of plasticity introduces an additional physical length scale

I
.

1 —
N 1 EG.
plane strain E : (- o2
1 |
L E

where L =-—"—"_
1—102

\/

= Regularization length scale [ cannot be chosen with reference only to the geometry

= Ratio of [ /7, should be meaningful in terms of crack growth resistance (approximating a
physical J-R curve)

= Motivation to move toward cohesive/Lorentz-type model
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Future Directions ) 2=

= Model:
* Implement inequality-constrained phase field solve

= Nonlinear PDE solve
= Allow for cohesive/Lorentz-type phase field model

= Modularization for use with arbitrary (hyperelastic & hypoelastic) plasticity models

= Verification efforts:
=  “Surfing BC” problem — verify toughness as function of crack length in EPFM (J-R curve)

= Explicit dynamics — convergence

= Validation effort:
=  Fully 3-D mesh with side grooves added
= Compare apparent J-R curve produced by phase field model
= Explicit dynamics validation



Stress Profiles

= Brittle Fracture (ideal, LEFM)
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Stress Profiles

= Ductile Fracture
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Stress Profiles

= Phase Field Fracture

a

Stress

a

Coherence

éé Damage

Distance ahead of Crack Tip

Distance ahead of Crack Tip



Stress Profiles

=  Solid Mechanics Researcher
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Thank you! ) .

Thanks to conference & minisymposia organizers!
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