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Phase field approach to fracture
■ Cracks represented as smeared field

a) sharp crack b) diffusive crack

Sandia
National
Laboratories

Miehe et al (2011)

■ Advantages: no sharp discontinuities, naturally captures arbitrary crack
paths, branching, merging

Bourdin et al (2014)

■ Genesis in linear elastic brittle fracture

■ Approaches for ductile failure have started appearing and are under
development

B Bourdin, J-J Marigo, C Maurini, P Sicsic. Phys Rev Lett 112, 014301 (2014)
R Alessi, J-J Marigo, S Vidoli. Arch Ration Mech An 214 (2014) 575-615
C Miehe, F Aldakheel, A Raina. lnt J Plasticity 84 (2016) 1-32
C Miehe, M Hofacker, L-M Schanzel, F Aldakheel. Comp Meth Appl Mech Engrg 294 (2015) 486-522
M Ambati, T Gerasimov, L De Lorenzis. Comput Mech 55 (2015) 1017-1040 2



Overview

■ SIERRA code & objectives

■ Phase Field Formulation

■ Classical, "AT-2"

■ Threshold, "AT-1"

■ Phase Field Implementation

■ Recent Efforts

■ Iterated staggered solution

■ Temporal / Spatial Convergence

■ Experimental Comparison

■ Moving to cohesive model

■ Future directions
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SIERRA Code & Objectives

%.•
Stershic, SAND2018-4988C

■ SIERRA finite element code

• Developed by Sandia National Laboratories

• Implicit & explicit time integration, Quasistatic & Dynamic

• Fully parallelized for clusters, HPC

• Finite strain formulation by default

• Robust explicit & implicit contact

• Constant verification & validations efforts, experimental comparisons

• Multiphysics: thermal, electrical, chemical, etc.

■ Objectives:

• Implement ductile phase field model in SIERRA

• Modular: can be coupled with any plasticity model

• Computationally efficient

• Capable with implicit and explicit time integration

• Convergent: high model credibility from verification & validation
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Phase Field Formulation

N Phase Field fracture concept:
1p = fn ip dn = f nike (_

E
eN
) + ikP(EP)dn + fr. Gcc1F

4 fn g (oil? (Ee) 
+ h(C)1P3 (EP) + f (c ,V c ,1)Gc dn

• Fracture energy: volumetric expression replaces surface energy functional

• F-convergent: expressions equivalent in limit / 0+

N Classical, AT-2

ip = c 2 * (11)" e ( eN
E ) + ipP(EP))+ Gc ((1 — c)2 + 4121V cl2)
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N Threshold, AT-1
ip = c 2 * (ike(EeN

) +1PP (EP )) + 24'crit((1— C.) + 121VC12)

• Damage only grows after critical energy condition reached, only in neighborhood of cracks

N Drawbacks:

• (Classical) Damage from any loading, even distant from stress concentration

• Damage irreversibility not intrinsic to mathematical formulation

• Interpretation of length scale — is infinitesimal / required?

What about critical stress?

What about mesh resolution?



Phase Field Implementation

• Classical (AT-2) & Threshold (AT-1) models implemented in common
framework:
• Euler-Lagrange equations derived by variational derivative of energy functional

Stationary
Functional

Euler-
Lagrange:

Damaged (61P = 0
Mechani al Solve

I gr

'V • as

Pha e Field Solve

(211;1

+ 1

rnax (,:-k , 1) c — 212Ac = 1
(Pcrtt 

Threshold

—12Ac =1 Classical

• Phase-field solve accomplished using a linear reaction-diffusion solver

• General form: Rc — DAc = S
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Phase Field Implementation

• Damage irreversibility

• Maximum driving energy history field, IC = maxi')

Easy to implement

• Deviation from Variational Consistency

Classical

Threshold

(21-P-1 + 1)c — 12Ac = 1
Gc

Phase Field Solve

(23-C1 
+ 1)c — 12 AC = 1

Gc

(
max 
(

,.11)- , 1) c 
3-C 

212Ac = 1 max , , 1) c — 212Ac = 1
' P crit ' P crit

((

3-C 
1 + 1) c — 212Ac = 1

11) crit
+

• Augmented Lagrangian approach using Inequality-constrained PDE solve

Difficult to implement in Sierra framework, but interested to explore



Phase Field Implementation

• Coupling scheme:
• Options: monolithic —or- staggered solution scheme ("alternate minimization")
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• Implemented mechanics/PF staggered solution

• No easy access in SIERRA to implement monolithic solve

• Initially, no iteration of mechanics/PF solve within timestep

• Lack of iteration leads to acceptance of unconverged solutions at each time step

• Leads to strong temporal sensitivity, toughness overpredicted

5
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Recent Efforts

• Coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep
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• Solve mechanics, solve damage, compute M residual

• Convergence metric: mechanical residual < tolerance

• Better metric?

Phase field solve = linear system 4 trivial PF residual

Combined energy residual?

Phase field relative residual between iterations?
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Recent Efforts

• Coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep

• Spatial convergence:
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Recent Efforts

• Coupling scheme:
• Implement iteration between Mechanics & PF solves within timestep

• Temporal convergence:
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Recent Efforts

■ Coupling scheme:
■ Implement iteration between Mechanics & PF solves within timestep

■ Spatially convergent ✓

■ Temporally convergent ✓

■ When the crack is growing, convergence is poor & slow

■ Loose tolerances needed for "convergence" & timestep completion

■ Tighter tolerances can't always be reached with 100 iterations, even with timestep
refinement

■ Consequence of using 'alternate minimization'?

Solving without benefit of off-diagonal terms

■ Consequence of using history variable?

Corrupted usage of variational principle, energies no longer consistent
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Model Validation

• Experimental test data, compact tension specimen:

• Experiment partner: Chris San Marchi (Sandia)

• Al 6061-T651

• Force/displacement, J-R curves
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Model Validation

• Parametrizations:

• Elasticity & Plasticity — calibrated from tensile specimen

• Fracture:

Toughness Gc = 12 kllm2 from Matweb (corresponds to experimental Jo)

Length scale chosen arbitrarily for plastic response, tijcrit 4t/j(ciy)

• Phase Field
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— experimental

0

• Validation caveats

• Geometry is 3-D but plane strain 4 need to allow for thickness-direction deformation
• More thoughtful selection of length scale needed

• 3-D geometry needs to have side grooves added

4 more work to be done!
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Model Validation

• Parametrizations:

• Elasticity & Plasticity — calibrated from tensile specimen

• Fracture:

Toughness Gc = 12 kllm2 from Matweb (corresponds to experimental Jo)

Length scale chosen arbitrarily for plastic response, tijcrit ,-=-,' 4t/j(ciy)

• Validation caveats
From Sun & Jin,

Fracture Mechanics
(2012)

• Geometry is 3-D but plane strain 4 need to allow for thickness-direction deformation
• More thoughtful selection of length scale needed

• 3-D geometry needs to have side grooves added

4 more work to be done!
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Addressing Plasticity

• Plasticity & length scales:

• The addition of plasticity introduces an additional physical length scale

▪ I- -0.11 11-

plane strain

1 EG,
r, =  

37r o- 02

_ 
where E =  

E
1 v 2

Sandia
National
Laboratories

• Regularization length scale I cannot be chosen with reference only to the geometry

• Ratio of l/rp should be meaningful in terms of crack growth resistance (approximating a

physical J-R curve)

• Motivation to move toward cohesive/Lorentz-type model

16



Future Directions

■ Model:
■ Implement inequality-constrained phase field solve

■ Nonlinear PDE solve

Allow for cohesive/Lorentz-type phase field model

■ Modularization for use with arbitrary (hyperelastic & hypoelastic) plasticity models
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■ Verification efforts:
■ "Surfing BC" problem — verify toughness as function of crack length in EPFM (J-R curve)
■ Explicit dynamics — convergence

■ Validation effort:
■ Fully 3-D mesh with side grooves added

■ Compare apparent J-R curve produced by phase field model

■ Explicit dynamics validation



Stress Profiles

• Brittle Fracture (ideal, LEFM)
A 00
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Distance ahead of Crack Tip



Stress Profiles

• Ductile Fracture

Yield Stress

1
1
1
1
1

Plastic
Zone

Distance ahead of Crack Tip

Sandia
National
Laboratories



Stress Profiles

• Phase Field Fracture
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Stress Profiles

• Solid Mechanics Researcher
•

Presentation

Reception

Last-minute
Work

Research as
usual

Distance ahead of Crack Tip
Time until Conference Reception
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Thanks to conference & minisymposia organizers!
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