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Introduction
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Hypersonic Flow

Hypersonic flows and underlying aerothermochemical phenomena
e Important in design & analysis of vehicles exiting/reentering atmosphere

¢ High flow velocities and stagnation enthalpies
Induce chemical reactions

— Excite thermal energy modes

e Aerodynamic and thermochemical models require full coupling

india National Laboratories
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Sandia Parallel Aerodynamics ar eentry Code (SPARC)

Sandia Parallel Aerodynamics and Reentry Code (SPARC)
e Under development at Sandia National Laboratories
e Compressible computational fluids dynamics code
e Models transonic and hypersonic reacting turbulent flows

e Solves transient heat equation and equations associated with
decomposing and non-decomposing ablators

¢ One- and two-way couplings between fluid-dynamics and ablation solvers

@ Sandia National Laboratories
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Verification and Validation

Credibility of computational physics codes requires verification and validation

e Validation assesses how well models represent physical phenomena
— Computational results are compared with experimental results

— Assess suitability of models, model error, and bounds of validity

¢ Verification assesses accuracy of numerical solutions against expectations
— Solution verification estimates numerical error for particular solution

— Code verification verifies correctness of numerical-method implementation

Sandia National Laboratories
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Code Verification

Code verification is focus of this work

e Governing equations are numerically discretized
— Discretization error is introduced in solution

¢ Seek to verify discretization error decreases with refinement of discretization
— Should decrease at an expected rate

¢ Use manufactured and exact solutions to compute error

Sandia National Laboratories
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Code Verification

Code verification demonstrated in many computational physics disciplines

¢ Fluid dynamics ¢ Multiphase flows ¢ Fluid-structure interaction
¢ Solid mechanics ¢ Electrodynamics e Radiation hydrodynamics
e Heat transfer e Electromagnetism

Code-verification techniques for hypersonic flows have been presented

¢ Single-species perfect gas

e Multi-species gas in thermal equilibrium
We present code-verification techniques for hypersonic reacting flows in
thermochemical nonequilibrium and demonstrate effectiveness

e Spatial discretization

e Thermochemical source term

Sandia National Laboratories



Equations

Outline

¢ Governing Equations
— Conserved Quantities
— Vibrational Energy
— Translational-Vibrational Energy Exchange
— Chemical Kinetics
Scope of Code Verification
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Equations
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Governing Equations: ng Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

ou

o TV Fe(U)=-V F,(U)+V-Fa(U) +5(0),

where
p pvl 0 —J
N
pv pPVV pl T
s Bo(U)= |, Fp(U)= -1, Fq(U) = :
pE v pEVT r(U) pv’ a(U) (rv—da—qu— JTh)I
pey pesv 0 (~ay— I7e,)’
p= {piye.ey Phis }T. WLl e miny zi',“}T: mass production rates per volume
V.V Ns n "
$(0) = 0 p= Zﬂ"‘ ey = Z /r; ey,: mixture vibrational energy per mass,
= 0 s=1 s=1
Qs—y+ CZ‘V'V p= i Ps RT. e, = {"u 53558 } L : vibrational energies per mass,
s=1 M Qt—y

translational-vibrational energy exchange,
VP e

B=-0—t E Z (e, T + ey, + h2)
2 e
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Governing Equations: ng Species in Vibrational Nonequilibrium

Multiple species

%
p={piy..-y Pra}

=30
=1

Ps 5
p=>" TR
g=1 =
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Governing Equations: ng Species in Vibrational Nonequilibrium

Local time derivative

ou
ot

P
pv
pE
pey
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Governing Equations: ng Species in Vibrational Nonequilibrium
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Governing Equations: ng Species in Vibrational Nonequilibrium
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Equations
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Governing Equations: ng Species in Vibrational Nonequilibrium

Diffusive flux gradient

V -Fq4(U)
-J
Fq(U) = (rv —q—qu — JTh)’
(—a. Jler)l
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Governing Equations: ng Species in Vibrational Nonequilibrium

Thermochemical source term

S (U)

w = {un,..., zi*,“}l : mass production rates per volume

S(U) =

F oo s

Qi—v

: i ros i z
W €y= {"u s ,z‘,,,_} : vibrational energies per mass

Q¢ : translational-vibrational energy exchange
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Vibrational Energy

Mixture vibrational energy per mass:

Ns
Ps
By = — Cias
g=il W
where
Mg - S
Yoy ey, (Ty) for molecules,
Cuvy =
0 for atoms,
and
R Vs,m

- ]\[5 exp (e/tis,,,,/T/) -1

ny,: number of vibrational modes of species s (n,, = 0 for atoms)

0, . characteristic vibrational temperature of mode m of species s

Vs,m*
Sandia National Laboratories
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L ]

Translational-Vibrational Energy Exchange

Landau—Teller model:

Ns Nug
o e'U.S.m (T> - e'Usmn (CZ_IU>
Qtﬁv = ps <7_ >
s=1 m=1 5,m
Translational-vibrational energy relaxation time for mode m of species s:
- -1
2 P 8 RT
o =,
£~ My ™ My
where
ps/ M, exp [asyme (T3 — bysm,sr) — 18.42] , /50,000 K\ 2
s S, Tawmat = y Gy =0, | —————
e Yoot pst /My SIS P E vs I

p’: pressure in atmospheres.
Qsm.sr and by, 1 vibrational constants for mode m of species s with colliding species s
Nya: Avogadro constant

0y, collision-limiting vibrational cross section

: collision-limiting vibrational cross section at 50,000 K.
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Chemical Kinetics

Ny
Mass production rate per volume for species s: ws = M E Bsr — g p)( — R,
=1

and backward reaction rates for reaction r:

Bs.r
- . 2 Ns 1 ps 2
and Ry, = vk, [1524 <:;\I\>

and backward reaction rate coefficients:
and kp, (T) = =

Equilibrium constant for reaction r:

& 10000 10000 10000 2
Ar, (—10000> + Ag, + As, lu<—[ >+A4,\ T +Asw.< T ) }

sy and fs,: stoichiometric coefficients for species s in reaction r

K. . (T) =exp

~: unit conversion factor

Cy,, nr, Aj,: empirical parameters

0,: activation energy of reaction r, divided by Boltzmann constant

T,: rate-controlling temperature (7, = /17T, for dissociation, T, =T for exchange)
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Scope of Code Verification

Conservation of mass, momentum, and energy:

ou

o TV Fe(U)=-V F,(U)+V-Fa(U) +5(0),

where
p pvl 0 —J
N
pv pPVV pl T
s Bo(U)= |, Fp(U)= -1, Fq(U) = :
pE v pEVT r(U) pv’ a(U) (rv—da—qu— JTh)I
pey pesv 0 (~ay— I7e,)’
p= {piye.ey Pn.t WLl e miny zi',“}T: mass production rates per volume
o ne n
Ps " ¥ &
0 p= Pas Cy = —e,,: mixture vibrational energy per mass,
S(U) = i 2 i )
Qv+ cz‘v'v s & Ps BT €= {"u 53558 }T : vibrational energies per mass,
—1 M Qi—y @ translational-vibrational energy exchange,
. v|? ‘ . 5 2
‘77*;7((& + ey, +R3)
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Scope of Code Verification

Non-diffusive flux gradients Thermochemical source term

V-F.(U) = -V -F,(U) S (U)
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Scope of Code Verification
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Equations
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Scope of Code Verification

Thermochemical source term

Implementation

w = {ain,..., Wn, } mass production rates per volume
w
) 0
BL= 0
- F s ; ,
Qi—v + e,’, w ey = {(,‘ ..... B } vibrational energies per mass




Spatial Accuracy

Outline

e Verification Techniques for Spatial Accuracy
— Spatial Accuracy
— Solutions
— Error Norms
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Spatial Accuracy
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Spatial Accuracy (Steady State)

Discretized equations
r(U;p) =0

For pth-order-accurate discretization, error is
e(x) = U(x) — = C(x)hP™) 4 O(RPH+1)

h: relative characterization of cell sizes
¢ Between meshes, with respect to one dimension
e Individual cell sizes may be non-uniform functions of A

* Sufficiently fine meshes — asymptotic region (h?X)+1 < pPX))
e(x) ~ C(x)hP™)

C(x): function of derivative(s) of the state vector U at x

e Approximately constant between meshes in asymptotic region

@ Sandia National Laboratories



Order of Accuracy

Observed accuracy p(x) computed using 2 meshes:
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Order of Accuracy

Observed accuracy p(x) computed using 2 meshes:
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Spatial Accuracy
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Order of Accuracy

Observed accuracy p(x) computed using 2 meshes:

Finer mesh (h/q)

(g-times as fine in each dimension)

e2(x) = C(x)(h/q)"™
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Spatial Accuracy

Order of Accuracy

Observed accuracy p(x) computed using 2 meshes:

Finer mesh (h/q)

(g-times as fine in each dimension)
e3(x) = C(x) (/)™
p(x) is computed by

B(x) = el x)/ea(x)]

= 10g(1 ‘ /(JZ(X)‘

@ Sandia National Laboratories



Solutions

Need solution to compute error
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Solutions

Exact Solutions
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Exact Solutions

e Negligible implementation effort: r(Ugxact; #) =0
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Solutions

Exact Solutions
¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions

* Do not satisfy original equations: r(Upyg; p) # 0
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Solutions

Exact Solutions
¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions
* Do not satisfy original equations: r(Upyg; p) # 0

¢ Require source term: ¥(U; pu) = r(Uys; )
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Solutions

Exact Solutions

¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions
* Do not satisfy original equations: r(Upyg; p) # 0

¢ Require source term: ¥(U; pu) = r(Uys; )

e Manufactured to exercise features of interest
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Spatial Accuracy
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Solutions

Exact Solutions

¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions
* Do not satisfy original equations: r(Upyg; p) # 0
¢ Require source term: f'(fJ; p) =r(Uwms; p)
e Manufactured to exercise features of interest

e Should be with
generally nonzero derivatives and moderate variations
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Solutions

Exact Solutions

¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions
* Do not satisfy original equations: r(Upyg; p) # 0
¢ Require source term: f'(fJ; p) =r(Uwms; p)
e Manufactured to exercise features of interest

e Should be smooth, continuously differentiable functions with
and moderate variations

@ Sandia National Laboratories



Spatial Accuracy
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Solutions

Exact Solutions

¢ Negligible implementation effort: r(Ugxact; o) =0
e Limited cases

e Span small subset of application space

Manufactured Solutions
* Do not satisfy original equations: r(Upyg; p) # 0
¢ Require source term: f'(fJ; p) =r(Uwms; p)
e Manufactured to exercise features of interest

e Should be smooth, continuously differentiable functions with
generally nonzero derivatives and
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Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
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Error Norms

Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:

e For cell-centered schemes, cell centers vary with mesh refinement
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Error Norms

Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p(x) is meaningless

Error norms to quantify spatial accuracy: p = log, (€a,/€as)

e Llnorm: ¢! = ||a(x) — a(x = a(x) — a(x)|d
L ch = la() =G0l = [ lax) ~a(x)1d0
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Error Norms

Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p(x) is meaningless

Error norms to quantify spatial accuracy: p = log, (€a,/€as)
o Llnorm: €l = ||a(x) — a(x)|1 = / la(x) — a(x)|dQ
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— Average error
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Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
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Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
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Error Norms

Computing p = f(p(x)) (e.g., p = mingeq 5(x)) has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p(x) is meaningless

Error norms to quantify spatial accuracy: p = log, (€a,/€as)

o Llnorm: €l = ||a(x) — a(x)|1 = / la(x) — a(x)|dQ
Q
— Average error

— Not significantly contaminated by localized deviations
(e.g., discontinuities, lower-order boundary conditions)

e L*®-norm: € = [|a(x) — @(X)]|oo = max la(x) — a(x)|
Xe
— Maximum error

— Catches localized deviations (expected and unexpected)

e Without discontinuities, both norms should yield same p
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Spatial Results

Outline

¢ Spatial-Discretization Verification Results
Single-Species Inviscid Flow in Thermochemical Equilibrium
— Five-Species Inviscid Flow in Chemical Nonequilibrium
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Spatial Results
90000000000

1D Supersonic Flow using a Manufactured Solution

¢ One-dimensional domain: = € [0, 1] m

Boundary conditions:
— Supersonic inflow (z =0 m)

— Supersonic outflow (z =1 m)
e 5 uniform meshes: 50, 100, 200, 400, 800 elements

e Solution consists of small, smooth perturbations to uniform flow:

plx) = p[l — esin(mz)],
u(z) = a[l — esin(nz)],
T(z) = T[1 + esin(nz)],

p=1kg/m? T =300K, M =2.5, c=0.05
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Spatial Results
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1D Supersonic Flow using a Manufactured Solution

-70 =
-7.5 -
[
-8.0 Z
I -85 T -5
g
gs
~105 -8
16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30
logyyn logjon
First-order accurate Second-order accurate
Original boundary conditions Corrected boundary conditions
Mesh p U Vi p U T
1-2  1.0008 1.0008 1.0008 2.0313 2.0362 2.0351
2-3  1.0002 1.0002 1.0002 2.0157 2.0184 2.0178
3-4  1.0001 1.0001 1.0000 2.0079 2.0093 2.0090
4-5 1.0000 1.0000 1.0000 2.0040 2.0047 2.0045
Observed accuracy p using L*>°-norms of the error

o(h)
— o(h?)
p, original BCs
u, original BCs
T, original BCs
~+ p, corrected BCs
— u, corrected BCs
% T, corrected BCs
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Spatial Results
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2D Supersonic Flow using a Manufactured Solution

e Two-dimensional domain: (z,y) € [0, 1] m x [0, 1] m

Boundary conditions:

— Supersonic inflow (z =0 m)
— Supersonic outflow (z =1 m
I

— Slip wall (tangent flow) (y =0 m & y =1 m)

¢ 5 nonuniform meshes: 25 x 25 — 400 x 400

e Solution consists of small, smooth

N

Ny

perturbations to uniform flow:

TR
SR

o) =D [l — esin

A
<

*

3
=

u

I
SR

u(z,y

=

0}

)
v (z,y

e e

) (

[1+ esin (
) =7 —esin(
)=T[ (

(
(
T(z,y) =T|1+esin(3mz) (sin( 7y +('o.~'( 71';(/) g

8

p=1kg/m3 T =300K, M =25, e=0.05
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sonic Flow using a Manufactured Solution

olp u/a

105 1.05

104
104

103
102 103
o1 102

.00
0.99 101
0.98 1.00

0.97
0.96 o
095 0.98

0.94
0.97

y 0.93
0.92 0.96

z
ofo

0.04 1.08
107

0.03
1.06
0.02 1.05
0.01 Lot
103
0.00 1.03
—0.01 L.01
1.00
~0.02 w5
~0.03 0.98
0.97

—0.04
y 0.96
—0.05 0.95

L=

National Laboratories



Spatial Results
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2D Supersonic Flow using a Manufactured Solution

= =f
= — O(h)
i — O(h?)
5 _3 p. original BCs
g u, original BCs
[ v, original BCs
< T, original BCs
[ —+ p, corrected BCs

-5

& —— u, corrected BCs
& s v, corrected BCs
= N %= T, corrected BCs

-9 -7

12 14 16 18 20 22 24 26 28 12 14 16 18 20 22 24 26 28
logy v/ logyy v/t
Fi]'ht*()l'(l(‘l' accurate S(,’("L)ll(1*(,)]'(1(‘]' accurate
Original boundary conditions Corrected boundary conditions
Mesh p u v T p u v T

1-2 0.9420 0.9409 0.9721 0.9628 2.0623 1.9188 1.8174 1.8598

2-3 0.9850 0.9902 0.9910 0.9874 2.1304 1.9450 1.9221 1.9280
3-4  0.9960 1.0002 0.9924 0.9952 2.0902 1.9603 1.9671 1.9586
4-5  0.9989 1.0009 0.9959 0.9984 2.0128 1.9823 1.9860 1.9809

Observed accuracy p using L*>°-norms of the error
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Spatial Results
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2D Supersonic Flow using an Exact Solution

¢ Two-dimensional domain: (r,0) € [1, 1.384] x [0, 90]°
¢ Boundary conditions:

— Supersonic inflow (6 = 90°)

— Supersonic outflow (0§ = 0°)

— Slip wall (tangent flow) (r =1 & r = 1.384)
* 6 meshes: 32 x 8 — 1024 x 256

e Solution is steady isentropic vortex:

o=+ 500 (1 (2°)] 7

ur(r) =0,

ug(r) = —a;M; L,
.

=i+ 230 (1- (2))].
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Spatial Results
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2D Supersonic Flow using an Exact Solution

28 10
26 09
24 08
07
06
20
N 05
04
e 03
14 02
12 01
10 00
T/
10 150
00 145
08 10
o7 135
06 130
05 125
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03 115
02 110
[ 105
00 100
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Spatial Results
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2D Supersonic Flow using an Exact Solution

~6.0 . . . . . . .
1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8
logyo v/t
Mesh p u v T

1-2 1.9896 1.9119 1.9943 1.9699

23 1.9735 1.9589 2.0070 1.9979

34 1.9954 1.9760 2.0099 2.0076

4-5 1.9972 1.9879 2.0054 2.0044

56 1.9986 1.9940 2.0029 2.0025

Observed accuracy p using L*°-norms of the error
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Spatial R
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3D Supersonic Flow using a Manufactured Solution

e Three-dimensional domain: (x,y,z) € [0, 1] m x [0, 1] m x [0, 1] m
¢ Boundary conditions:
— Supersonic inflow (z =0 m)
— Supersonic outflow (z =1 m)
— Slip wall (tangent flow)

[p=0m,g=1mz=0m,z2=1m)

¢ 5 nonuniform meshes:
25 x 25 x 25 — 400 x 400 x 400

XX
&

e Solution consists of small, smooth
perturbations to uniform flow:

SRNER

plx,y,2) = p[1 — esin (§7z) (sin(my) + cos(my))(sin(rz) + cos(m2))],

u(@,y,2) = @[l + esin (j7z) (sin(my) + cos(my))(sin(rz) + cos ] \
v(z,y,2) =] — esin (§mz) (sin(ry) )(sin(mz) + cos(w2))], §§§
w(z,y,2) = @[ —esin (§rz) (sin(my) + cos(ry))(sin(rz) )]s .
T(x,y,2) = T[1 + esin (372) (sin(ry) + cos(my))(sin(rz) + cos(72))],

p=1kg/m®, T =300 K, M =25, e =005




Spatial Results
000000000e

3D Supersonic Flow using a Manufactured Solution

{p, u, v, w, T}
|
o
b

«
|
o

/@),

logy(
|
o
o

2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
logyo ¥/n

Mesh p U v w Vi

1-2 2.0849 1.8731 1.9841 1.7039 1.9404
2-3 21406 1.9923 1.9295 1.8621 1.9774
3-4  2.0990 2.0115 1.9623 1.9349 1.9922
4-5 2.0585 2.0100 1.9820 1.9571 1.9964

Observed accuracy p using L*>°-norms of the error
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Five-Species Air Model

5 species: Ng, Oo, NO, N, and O

17 reactions:

7 Reaction Type of Reaction
1-5 No+ M=N+N+M, M={Ny Oy, NO, N, O} Dissociation
6-10 O2+M=0+0+M, M={Ny Oy, NO, N, O} Dissociation
11-15 NO+ M =N+0+M, M ={Ny, Oz, NO, N, O} Dissociation

16 N2+ O =N+NO Exchange
17 NO+ O =N+ 0, Exchange

@ Sandia National Laboratories



Spatial Results
O@000

Five-Species Inviscid Flow in Chemical Nonequilibrium

e Two-dimensional domain: (z,y) € [0, 1] m x [0, 1] m
e Same boundary conditions
e 7 nonuniform meshes: 25 x 25 — 1600 x 1600

e Solution consists of small, smooth perturbations to uniform flow

PN, (7,y) = PN, |1 — esin (37
3

p0, (T,y) = po, |1 + €sin (57

pNo(2,y) = pno |1 + esin

pN (z,y) =pn |1+ e€sin

1+ esin

»H—A

v (z,9)=70 — esin

»Hv

1+ esin

[ (i
[ (:
[ (
[ (
po (x,y)=po [1+esin( mx
[ (im
[ (im
[ (3
[ &

5
1
3
1

T, (z,9)=1T,

@ Sandia National Laboratories
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Spatial Results
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Spatial Results
{oe]e] lo)

2D Supersonic Flow in Thermal Equilibrium using a Manufactured Solution

=5
Variable Value  Units
5 — O(h?

PN» 0.77  kg/m3 /)N('I )
PO, 020  kg/m? 0,
pxo  0.01 kg/m3 o
PN 0.01  kg/m? PN
0 0.01  kg/m? Po
i 3500 K —u
M 2:5 v
e 0.05 R

0 lt:v 2?0 2?5 3?(] 3.5

logyy v/t
Mesh PN, PO, PNO PON PO U v T

1-2 2.0608 2.1382 2.0698 2.0644 2.1885 1.8425 1.8289 1.7351
3 21161 21219 21127 21072 2.1697 1.8876 1.9220 1.7923
4 20798 2.0813 1.8555 2.0754 2.0971 1.9200 1.9686 1.8525
5 2.0456 2.0458 1.8917 2.0428 2.0806 1.9522 1.9871 1.9079
5-6  2.0243 2.0243 1.9427 2.0228 2.0529 1.9735 1.9939 1.9485
7 20125 2.0125 1.9790 2.0118 2.0318 1.9865 1.9969 1.9737

2D MMS, ns =5, T, =T, w # 0: Observed accuracy p using L*-norms of the error
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Spatial Results
{eJe]ole] ]

2D Hypersonic Flow in Thermal Nonequilibrium using a Manufactured Solution

—1
Variable Value  Units = Sl Bl . — o)
N, 0.0077  kg/m? & - PN2
po, 0.0020 kg/m? | Poa
pno  0.0001  kg/m? &l NG
PN 0.0001  kg/m? T iz
po 0.0001  kg/m® < =5 e
T 5000 K L 6t —
i) 1000 K & T
M 8 éf i o + T
€ 0.05 _ . . . .
1.0 1.5 2.0 2.5 3.0 3.5
logy v/n

Mesh PN, PO PNO PN PO u v T T,

1-2 1.5659 1.6370 1.6555 1.6046 1.5869 1.7742 1.7337 1.7814 1.5545

2-3  1.9067 1.6944 1.6986 1.7598 1.8819 1.8916 1.8701 1.8768 1.9150

3-4 19868 2.0475 2.0698 2.0477 2.0110 1.9488 1.9357 1.9349 2.0082

4-5 2.0074 1.9941 2.0138 1.9936 2.0089 1.9752 1.9684 1.9672 2.0168

5-6  2.0062 1.9939 2.0004 1.9935 2.0061 1.9879 1.9843 1.9836 2.0111

[=2]
-~

2.0037 1.9965 1.9994 1.9962 1.9955 1.9940 1.9922 1.9918 2.0063

2D MMS, ns =5, T, # T, w # 0: Observed accuracy p using L*-norms of the error

Sandia National Laboratories
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Outline

¢ Verification Techniques for Thermochemical Source Term
— Techniques
— Distinctive Features
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e S(U) = [W; 0; 0; Qi—y + efv'v] is algebraic

— S (U) computed by same code for both sides of #(U; ) = r(Uns; p)

— Manufactured solutions will not detect implementation errors

» Compute Q;—(p, T, Tv)v ev(l), T ﬂ)): and W(P T, Tv)
— For single-cell mesh when initialized to {p, T, T,,} with no velocity
— For many values of {p, T, T,,}

— Compare with independently developed code

e For each query, compute symmetric relative difference

Bsparc — 3
Bsparc + 5

= {Q[ vy vy, 1 €vo, s Eunos WNys WOy WNO, WN, 1['()}

@ Sandia National Laboratories
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Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

— Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial

* Variety of models and properties complicates quantifying agreement

* Less control over precision of output
e Relative differences required to be low — near machine precision
— Models and material properties are the same
— Typically code-to-code comparison accepts a few percent
¢ Wide condition coverage

— Comparison is queried for 1000s of conditions, spans extreme ranges

— Code-to-code comparison typically considers single or few conditions

@ Sandia National Laboratories



Source Results

Outline

e Thermochemical-Source-Term Verification Results
— Samples of Q;—(p, T, Ty), e,(p, T,T),), and w(p,T,T,)
— Nonzero Relative Differences in QQ;_, and e,
Nonzero Relative Differences in w

Sandia National Laboratories



burce Results

Samples of Q;_,(p, T, T,), e,(p, T, T,)

Variable Minimum Maximum  Units Spacing
PN 1€ g 10! kg/m?  Logarithmic
PO, 10~6 10 kg/m?  Logarithmic
PNO 10-¢ 10° kg/m® Logarithmic
PN 106 10! kg/m3 Logarithmic
PO 106 10! kg/m?®  Logarithmic
T 100 15,000 K Linear
7 100 15,000 K Linear

10°

Ranges and spacings for 100,000

Latin hypercube samples of p, T', and T,

10°

10!

10*

102

Number of queries

10!

100

-8 -6

—4 -2 0
log1g €

and w(p,T,T,)

107

10*

10°

10%

10!

100

—6 -4 =2 0 4 6 8 10 12 14 16 18 20
logyg | @i

10° ——

10" ]

10°

10° |

10t

107

-6 -4 -2 2 4 6 8 10

india National Laboratories



Source Results
[ Jele}

Original Nonzero Relative Differences in ();_, and e,

10° 10°

10

10°

Number of queries

107

1

10 10t

10° 10°

-10 -9 -8 -7 —6 -5 —4 -3 -2 -1 0 1 —16 —14 —12 —10 -8 —6 —4 -2 0 2

logigdq.-. logg de.
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Source Results
[ Jele}

Original Nonzero Relative Differences in ();_, and e,

10° 106

10

10°

107

Number of queries

10!
10"

107

10"
-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 —-16 —-14 -12 -10 -8 —6 —4 -2 0

o

logigdq.-. logg de.

e Relative differences are not near machine precision
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Source Results
[ Jele}

Original Nonzero Relative Differences in ();_, and e,

10° 10°

10

10°

Number of queries

107

1

10 10t

10° 10°

-0 -9 -8 -7 —6 -5 —4 -3 -2 —1 0 1 —16 —14 —12 —10 -8 —6 —4 -2 0 2

logy 8q,_. B logy de,
8Q,_,>10%

* g, , > 10% in 8.8% of simulations
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Source Results
[ Jele}

Original Nonzero Relative Differences in ();_, and e,

10° 10°

10

10°

107

Number of queries

)
10 10!

100

10°
-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 —-16 —-14 -12 -10 -8 —6 —4 -2 0

o

logyo 0, E/_“/ logyq de
60,y >1%

* 69, > 1% in 29% of simulations
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Source Results
[ Jele}

Original Nonzero Relative Differences in ();_, and e,

10° 10°

10

10°

Number of queries

107

1

10 10t

10° 10°

-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 -16 -14 -12 -10 -8 -6 -4 -2 0 2

1081090, logo de ~~
ey >100%

* 0o, > 100% for some simulations

Sandia National Laboratories



Source Results
(o] le}

Causes of Large Relative Differences in );_, and e,

Two causes:
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Source Results
(o] le}

Causes of Large Relative Differences in );_, and e,

Two causes:
e Incorrect lookup table values for vibrational constants
— For Ny and Os when the colliding species is NO
— Introduced error in Q;_, for all simulations

— For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow,
1.4% change in pressure and 2.7% change in heat flux

@ Sandia National Laboratories



Source Results
(o] le}

Causes of Large Relative Differences in );_, and e,

Two causes:

¢ Loose convergence criteria for computing 7 from pe,

— Unsuitable for low values of T,
— Introduced errors in @;_, and e, for a few simulations

— For converged, steady problem, original criteria are acceptable

Sandia National Laboratories



Source Results
[e]e] ]

cted Nonzero Relativ ifferences in Q;_, and e,

Original lookup table and convergence criteria

10°

10

10°

ser of queries

Number of qu

107
10%
!
10 10!
100 100
-10 -9 -8 -7 —6 -5 —4 -3 -2 -1 0 1 —16 —14 —12 —10 -8 —6 —4 -2 0 2

logigdq.-. logg de.
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Corrected Nonzero Relativ

Results

Original lookup table and convergence criteria

10°

10

10°

107

10!

107
-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

logigdq.-.

Corrected lookup table and tighter convergence criteria

107

-14 —13 —12

logyg dq,..,

—10

10°

—16

10!

10"

and e,

—14 -12 -10 8 6 -4 -2 0 2
logg de.
—15.0 —145 ~14.0
logyg de,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

e Relative differences are consistent with our expectations

10° 10°

Number of queries

10!

10"

—16 -15 —14 -13 -12 —10 —15.0 -14.5 —14.0
logy 0, 10g19 0o,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

* 59, ., <1079 and 8., < 1071* in all simulations

10° 10°

Number of queries

10!

10"

—16 -15 —14 -13 -12 —10 —15.0 -14.5 —14.0
logy 0, 10g19 0o,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

* 3@, > 1072 in 28/100,000 simulations

10° 10°

10t

: 2 10°

£ £ 10
z Z

10!

100

—14 -13 -12 =11 —10 —15.0 -14.5 —14.0
logy 0, 10g19 0o,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

* 3@, > 1072 in 28/100,000 simulations

— T and T, have relative difference less than 0.2%

10° 10°

10t

10°

10%

Number of queries

Number of queries

10!

10"

—14 -13 -12 =11 —10 —15.0 -14.5 —14.0
logy 0, 10g19 0o,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

* 3@, > 1072 in 28/100,000 simulations

— T and T, have relative difference less than 0.2%

e T)—e,. T
— In numerator of <em (@) =Cvom Tv) s €w,.. (I') and ey, _(Ty) share

<7—.>.'m>
many leading digits
10° 10°
Z

10!
100

—16 -15 —14 -13 -12 —10 —15.0 -14.5 —14.0

logyg dq,.., logy de,
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Source Results
[e]e] ]

Corrected Nonzero Relative Differences in ();_, and e,

* 50, , > 10712 in 28/100,000 simulations
— T and T, have relative difference less than 0.2%

e T)—e,. T
— In numerator of vo.m ()= €ve,m (Tv) , ey, . (T) and e,, (T,) share
o) 5 '€ T

many leading digits

— Precision lost when computing difference

10° 10°

Number of queries

10!

10"

—16 -15 —14 -13 -12 —10 —15.0 -14.5 —14.0
logy 0, 10g19 0o,
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Source Results
L ]

Nonzero Relative Differences in w

Number of queries

10%

10!
10° - -

-6 -15 -14 -13 -12 -1 —10 =

logyg ds
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Source Results
L ]

Nonzero Relative Differences in w

Number of queries

10%

10!
10° - -

-6 -15 -14 -13 -12 -1 —10 =

logyg ds

e Relative differences are consistent with our expectations
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Source Results
L ]

Nonzero Relative Differences in w

Number of queries

10%

10!
10° - -

-6 -15 -14 -13 -12 -1 —10 =

logyg ds

e w < 107 in all simulations
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Source Results
L ]

Nonzero Relative Differences in w

Number of queries

10%

10!
10° - -

-6 -15 -14 -13 -12 -1 —10 =

logyg ds

e w > 10712 for 87/500,000 computed values (5 species, 100,000 simulations)
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Source Results
L ]

Nonzero Relative Differences in w

Number of queries

-6 —-15 —14 13 -12 -1 -0 -9
logyg ds

e w > 10712 for 87/500,000 computed values (5 species, 100,000 simulations)

— Duc to precision loss that can occur from subtraction in

s ]\[ 27,1’71 ( = (l.,,) (R‘/‘r == Rb,»>
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Summary

Outline

e Summary
— Code-Verification Techniques
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Summary
[ ]

Code-Verification Techniques

e Manufactured and exact solutions
Effective approaches for verifying spatial accuracy — detected multiple issues
— Rigorous norms improve effectiveness — L>-norm of error more useful

Insufficient for algebraic source terms — both evaluations the same

¢ Thermochemical-source-term approach

— Effective approach for verifying implementation — detected multiple issues
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