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Ductile Shear Deformation and Failure
' Experiments
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I Solid Cylindrical Specimen Torsion

ELarge pure shear deformation

oStable behavior at large deformation till failure

NAnalysis is more complex than thin-walled tube specimens

oFew studies have been done on solid cylinder torsion

(1950) A Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill Book Company

(1991) Richard E Lyon, "Shear Strength of a Ductile Material from Torsion of Solid Cylinders," Journal of
Testing and Evaluation,JTEVA, Vol. 19, No. 3, pp. 240-243

(1992) Han C. Wu, Zhiyou Xu and Paul Wang, "The Shear Stress-Strain Curve Determination from Torsion
Test in the Large Strain Range," Journal of Testing and Evaluation, JTEVA, Vol. 20, No. 6, pp. 396-402

(2011) Cassandra M. Kingsbury, Preston A. May, Douglas A. Davis, Scott R. White, Jeffrey S. Moore and
Nancy R. Sottos, "Shear activation of mechanophore-crosslinked polymers,"Journal Materials Chemistry, 21,
8381-8388

(2014) Jessica Papasidero, Véronique Doquet, Sebastien Lepeer, "Multiscale investigation of ductile fracture
mechanisms and strain localization under shear loading in 2024-T351 aluminum alloy and 36NiCrMo16
steel," Materials Science & Engineering A, 610, 203-219



1 Nadai's Solution

1. Plane sections remain plane

2. All radii remain straight

3. No change in axial length

4. No change in radius

5. Material is isotropic
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Wufs Method

l . Plane sections remain plane

2. All radii remain straight

3. Change in axial length, second-order
strain effect

4. Change in radius, second-order
strain effect

5. Material is transversely isotropic
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Wu's solution for large torsion adding axial
elongation and radius change of cylinder:
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I Torsion of Solid Cylindrical Al Specimens

I. MTS Mini Bionix AT Testing
System

2. GOM ARAMIS System (3D DIC)

• Control parameter
Axial: Force
Torsion: Rotation

Torsion experiment with 3D-DIC



Shear Strain of Torsion Experiment
Stage 75 145 186

Video: Solid_3 £xy
Actual testing time: — 25 s

6.67 degree/s, DIC, IR
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Solid_3 Shear Strain exy Distribution at
Different Stages
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(1) Full-field shear strain exy measurement with 3D-DIC system;
(2) Due to large rotation the area utilized for DIC measurements, or the measurable area,

became smaller and smaller. Since a pair of cameras only covered a portion of the
cylinder surface, part of the DIC pattern gradually rotated out of the camera view; and
those speckles newly rotated into the view did not have a reference state. 1



1 Solid 3 Shear Strain en, Distribution
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Shear Strain exy from Incremental
DIC Analysis
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I Deformation Gradient and Engineering I

Shear Strain en, IY y

Deformation gradient tensor:

p k 0
F =[0 q 01 =

0 0 s

F = RU

[
1 + ex y 0
0 1 + ey 0

0 0 1 + ez

Where R is the rotation tensor
U is the right stretch tensor

cosO sinO 0 pcosO psinO
R = —sinO cosO 0 U = psinO ksinO + qcosO 0

0 0 1 

01

0 0 s

_ 1 ,,,,

Biot strain U is defined from the right stretch tensor as follows:

[ex—B exy—B 0

U exy—B ey—B 0 I= u — 1

0 0 ez—B

p = exy_B/ s inO = (ex_B + 1)/ c osO,

• Biot strain is direct output from
DIC.

• Deformation gradient can be
calculated from Biot strain.

exy-Bq = (1 + ey_B — exy-B tanO)cosO, tanO = 
eoc_B+1



Mapping Engineering Shear Strain exy
back to the Original Reference

Calculating shear strain from deformation tensor

Pif kif 011pi k1 0
0 qi f 0 0 q1 0

O 0 sif 0 0 s1
Fi FifF1 = 

Fi = FifF60, for 60 < i < 120

Fi = FifF120, for i > 120.

Three "incremental" shear strain curves 0 -> 1
— 60, 60 -> 61 — 120 and 120 -> 121 — 183 are
based on three distinct references. After
transformation and composing, curve 0 -> 1-
183 is the shear strain history of the specimen.
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Shear Stressfu Shear Strain
25

Calculating Shear Stress 20 /1"#-').P.—-..------------..
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The radius r is constant for circular cylinder
during torsion, so y = row
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fitting function of T-y curve.
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The engineering shear stress-strain curve of the
specimen is determined, shown on the right.
Three specimens exhibit consistent stress-strain
behavior.

Sh
ea

r 
St

re
ss

 T
,
 M
P
a
 

—Experimental data

—Smoothed curve
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Torsion of Solid Cylindrical 304L
Specimens

304L VAR specimens have higher strengths and larger
ductility;
Specimen dimension: diameter = 3.175mm (0.125"),
length = 5.766 mm (0.227")
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Shear Strain exy Distribution of 304L VAR
Specimens using Different Reference
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Shear Strain exy and Normal Strain e„&eY
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Shear Stress
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1Torsion Experiment with 360° DIC
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19

Multi-view Registration for 360° DIC

Syl 2 • 

Syl 3

r
Dual sided rigid plate needed Same side of rigid speckle can be used

360° DIC:
- Use rigid speckle pattern specimen to calibrate and register the relative position of

the multiple camera systems
- Select one camera system as reference, transfer the rest of systems to the reference

system
- Combine the transferred data



20 1Challenges in 360° DIC
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1 Sum ma ry
■ 360° 3D-DIC system is developed for torsion tests of solid bar of

304L VAR specimens.

■ Large shear strain of 304L VAR is experimentally measured from
each individual pair of DIC cameras and added up from the
incremental strain.

■ Strain is localized at very large strain which is close to failure.

■ 360° 3D-DIC system is able to put the whole specimen together and
generate the 360° view of the specimen, however, the extraction of
the data can be only worked with each individual camera set.

■ Surface stress evaluation is based on the results of Nadai and Wu.
Pure shear stress-strain curves of engineering materials 304L VAR
are obtained.

■ Setup of the DIC system needs to be precise to avoid the addition of
the systematic error throughout all the steps.


