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Ductile Shear Deformation and Failure
Experiments

Torsion
- Thin wall tube
- Solid or thick wall cylinder [
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Solid Cylindrical Specimen Torsion

/—4\ "[arge pure shear deformation

|
\—/ . . . .
r— =Stable behavior at large deformation till failure
o " Analysis 1s more complex than thin-walled tube specimens
P —
. il "Few studies have been done on solid cylinder torsion
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Nadai’s Solution

Plane sections remain plane

All radii remain straight
No change in axial length

No change in radius

Material is isotropic

: d
e Strain y, =1,w, W= d—i)
e Stress
- Thin wall tube
Tr, mr,* (
To =7 IZ=
I, 2
- Solid Cylinder
- ar + 3T
o = 2mr,3 Y dw




|Wu’s Method

Plane sections remain plane
All radii remain straight

Change in axial length, second-order
strain effect

Change in radius, second-order
strain effect

Material is transversely isotropic

Nadai’s method
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Wu’s solution for large torsion adding axial
elongation and radius change of cylinder:

e Strain yy;=1w =7,(1+e,)w
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Torsion of Solid Cylindrical Al Specimens

|. MTS Mini Bionix AT Testing
System

2. GOMARAMIS System (3D DIC)

* Control parameter
Axial: Force
Torsion: Rotation

Torsion experiment with 3D-DIC



Shear Strain of Torsion Experiment

Video: Solid_3 & 6.67 degree/s, DIC, IR

Actual testing time: ~ 25 s
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‘ Solid_3 Shear Strain e,, Distributionat | m
Different Stages |

42° — stage 75 42° — stage 142 80° — stage 186
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(1) Full-field shear strain €,, measurement with 3D-DIC system;

(2) Due to large rotation the area utilized for DIC measurements, or the measurable area,
became smaller and smaller. Since a pair of cameras only covered a portion of the
cylinder surface, part of the DIC pattern gradually rotated out of the camera view; and
those speckles newly rotated into the view did not have a reference state.
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Solid_3 Shear Strain e,, Distribution
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Shear Strain e, from Incremental
DIC Analysis
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Deformation Gradient and Engineering

Shear Strain e,, . |
Deformation gradient tensor: N | iy
p k 0 1+e, 14 0 | |
F=]|0 q 0|= 0 1+e, 0
0 0 S 0 0 1'+'€Z //— —;7 ,,;
. Where R is the rotation tensor
F=RU ) :
U is the right stretch tensor
cos® sin6 0 pcosO psinf 0
R =|—=sin@ cos® 0| U=|psin@ ksind + qcosb 0]
0 0 1 0 0 S

Biot strain U is defined from the right stretch tensor as follows:

€x-B  €xy—B 0 = Biot strain is direct output from
0 0 e,_p = Deformation gradient can be

calculated from Biot strain.

D = eyy_p/sind = (ex_p+1)/cosb,

€xy-B

q=(1+ey_p— exy_ptand)cosd, tand =



Mapping Engineering Shear Strain e,

back to the Original Reference

Calculating shear strain from deformation tensor

i’ ki Oflpy k O
Fi=F/F; =10 ¢’ 0|0 g O
0 0 Si’ 0 0 St

Fi — Fi,F609 for 60 <1<120

Fi = Fi’Flz()a fOI' 1> 120.

Three “incremental” shear strain curves 0 -> 1
— 60, 60 ->61 —120and 120-> 121 — 183 are
based on three distinct references. After
transformation and composing, curve 0 -> 1-

183 1s the shear strain history of the specimen.
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| Shear Stress~ Shear Strain

Calculating Shear Stress

. ar + 3T
" am 2\ Ydw
The radius r is constant for circular cylinder
during torsion, s0 Y = r,w

a1 replaced by -
w — is replaced by yﬂ

B
oz \Vay

47 This derivative can be calculated
—— by differentiating the polynomial
fitting function of T-y curve

The engineering shear stress-strain curve of the
specimen is determined, shown on the right.

Three specimens exhibit consistent stress-strain

behavior.
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Torsion of Solid Cylindrical 304L |
Specimens |

Engineering Stress, MPa
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Engineering Strain

Axial direction tensile stress-strain
curves of SS304-VAR
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Torque-rotation curves of SS304L-
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Shear Strain e,, Distribution of 304L VAR
Specimens usmg Different Reference
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304VAR Ring3-1 native shear strain ey, _p. (a) 510 -> 555 showing uniform
deformation and (b) 656 -> 682 showing shear strain localization.



|Shear Strain e,, and Normal Strain e,, & e
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| Shear Stress

Torque, N-m
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|Torsion Experiment with 360° DIC
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360° DIC:
- Four pairs of cameras
- Full surface view of the specimen



| Multi-view Registration for 360° DIC
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Dual sided ngid plate needed Same side of ngid speckle can be used

360° DIC:

- Use rigid speckle pattern specimen to calibrate and register the relative position of
the multiple camera systems

- Select one camera system as reference, transfer the rest of systems to the reference
system

- Combine the transferred data



35 ‘ Challenges in 360° DIC .
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360° DIC:

- Common area rotate out of the view of same pair of camera for torsion experiment



| Summary

360° 3D-DIC system is developed for torsion tests of solid bar of
304L VAR specimens.

Large shear strain of 304L VAR is experimentally measured from
each individual pair of DIC cameras and added up from the
incremental strain.

Strain is localized at very large strain which is close to failure.

360° 3D-DIC system is able to put the whole specimen together and
generate the 360° view of the specimen, however, the extraction of
the data can be only worked with each individual camera set.

Surface stress evaluation is based on the results of Nadai and Wu.
Pure shear stress-strain curves of engineering materials 304L VAR
are obtained.

Setup of the DIC system needs to be precise to avoid the addition of
the systematic error throughout all the steps.



