
Solid Cylindrical Bar Torsion for
Shear Plastic Deformation and F

Characteri A
ailure

Lul, H. Jinl, J.W. Foulkl, J. Ostien1, S.L. Kramer2, A. Jones2 -

1 Sandia National Laboratories, Livermore, CA 94551

2 Sandia National Laboratories, Albuquerque, NM 87122

PRESENTED AT

2019 SEM Annual Conference, June 3-6, Reno, Nevada

ing

911111111r
Sandia Nabonal Laboratories is a rnultirnission
laboratory rnanaged and operated by National

Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International inc., for the U.S. Department of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2019-6260C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Ductile Shear Deformation and Failure
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1 Nadai's Solution

1. Plane sections remain plane

2. All radii remain straight

3. No change in axial length

4. No change in radius

5. Material is isotropic
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Wufs Method

l . Plane sections remain plane

2. All radii remain straight

3. Change in axial length, second-order
strain effect

4. Change in radius, second-order
strain effect

5. Material is transversely isotropic
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Wu's solution for large torsion adding axial
elongation and radius change of cylinder:
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1 Torsion of Thin Wall Tubes
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1 Tube 2 Experiment
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I Torsion of Specimen Solid 1
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1 Deformation Images
Deformation images of specimen Solid Torsion — Stable large shear till failure

Stage 0, 0 degree Stage 211, 40 degree Stage 371, 80 degree Stage 532, 120 degree Stage 850, 180 degree

(1) At Q=40°, inclined straight lines within the gage section indicated uniform deformation.
(2) Lines were kinked at upper part of the gage section at Q=80°, which denoted surface deformation

was not uniform and localization had occurred. The transition from uniform to localization was
gradual; it started approximately at Q=60°.

(3) For further rotation, the deformation was evidently concentrated at the localized zone as shown in
Q=120° and 180° images.

(4) Finally, the specimen cracked within the localized zone and separated the cracked cross-section.
The system stroke showed a maximum 0.013 mm axial displacement. It corresponds to about
0.1% axial strain if all elongation is from the gage section.



1Shear Angle Estimation

Right Camera

y = tan a

ct = -10° a = -18° a = -22°

a = -64°

y = 0.176 y = 0.325 y = 0.404

y = 2.05



Estimated Shear Stress-Strain Curve

250

200

,-0 100

50

0

Experimental Data Estimated r — y Curve, Nadai's Method
35 L.

30

25

20

15

0 50 100 150 0 0 5 1 1.5 2 2 5

Rotation, angle Shear Strain

• Swift effect - Axial elongation under torsion
0.006

0.005
c

0.004

E

0.003

3 0 002

0.001

1.5

1

. 0 5

o
LL

70 0

-0.5

0   -1

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

3 5

Time, s Time, s



1Shear Strain Measurement

a = -26° y = 0.488

a = -80° y = 5.67

a = -73° y = 3.27



1 Experimental Setup with 3D-DIC

I. MTS Mini Bionix AT
Testing System

2. GOM ARAMIS
System (3D DIC)

3. FLIR SC6000 Infrared
Camera

• Control parameter
Axial: Force
Torsion: Rotation

Specimen with DIC pattern



1Shear Strain of Solid 3 Torsion Experimenn

Video: Solid 3 c_ xy
Actual testing time: — 25 s

6.67 degree/s, DIC, IR
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Solid_3 Shear Strain exy Distribution at
Different Stages
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(1) Full-field shear strain exy measurement with 3D-DIC system;
(2) Due to large rotation the area utilized for DIC measurements, or the measurable area,

became smaller and smaller. Since a pair of cameras only covered a portion of the
cylinder surface, part of the DIC pattern gradually rotated out of the camera view; and
those speckles newly rotated into the view did not have a reference state. 1



1 Solid 3 Shear Strain en, Distribution
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Shear Strain exy from Incremental
DIC Analysis
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I Deformation Gradient and Engineering I

Shear Strain en, IY y

Deformation gradient tensor:

p k 0
F =[0 q 01 =

0 0 s

F = RU

[
1 + ex y 0
0 1 + ey 0

0 0 1 + ez

Where R is the rotation tensor
U is the right stretch tensor

cosO sinO 0 pcosO psinO
R = —sinO cosO 0 U = psinO ksinO + qcosO 0

0 0 1 

01

0 0 s

_ 1 ,,,,

Biot strain U is defined from the right stretch tensor as follows:

[ex—B exy—B 0

U exy—B ey—B 0 I= u — 1

0 0 ez—B

p = exy_B/ s inO = (ex_B + 1)/ c osO,

• Biot strain is direct output from
DIC.

• Deformation gradient can be
calculated from Biot strain.

exy-Bq = (1 + ey_B — exy-B tanO)cosO, tanO = 
eoc_B+1



Mapping Engineering Shear Strain exy
back to the Original Reference

Calculating shear strain from deformation tensor

Pif kif 011pi k1 0
0 qi f 0 0 q1 0

O 0 sif 0 0 s1
Fi FifF1 = 

Fi = FifF60, for 60 < i < 120

Fi = FifF120, for i > 120.

Three "incremental" shear strain curves 0 -> 1
— 60, 60 -> 61 — 120 and 120 -> 121 — 183 are
based on three distinct references. After
transformation and composing, curve 0 -> 1-
183 is the shear strain history of the specimen.
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Shear Stressfu Shear Strain
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The engineering shear stress-strain curve of the
specimen is determined, shown on the right.
Three specimens exhibit consistent stress-strain
behavior.
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1 Summary
■ A new solid bar torsion test with 3D-DIC is developed.

■ Several reference configurations need to be employed due to
large twist of the cylindrical specimen. Total strain is calculated
from incremental deformation data via repeated exploitation of the
multiplicative decomposition of the deformation gradient.

■ Shear strain of Al 6061-T6 is experimentally measured on the
order of 2-3. Localized zone starts to develop at 60% shear strain,
and most plastic deformation is developed in the localized zone.
Substantial and repeatable strains are achieved up to failure.

■ Surface stress evaluation is based on the results of Nadai and
Wu. Pure shear stress-strain curves of engineering materials
A16061-T6 are obtained and are consistent among different
specimens.

■ Solid bar torsion provides stable shear deformation and uniform
shear stress on the surface of the gage section. Various
specimen size could be used depending on torque and DIC
capacities.


