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Ductile Shear Deformation and Failure
Experiments

Torsion
- Thin wall tube
- Solid or thick wall cylinder [
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Nadai’s Solution

Plane sections remain plane
All radii remain straight
No change in axial length

No change in radius

Hi 7 W =

Material is isotropic

: d
e Strain y, =1,w, W= d—i)

e Stress

- Thin wall tube

- Solid Cylinder

- (w0 3y
fo = 2mr,3 Y dw




|Wu’s Method

Plane sections remain plane
All radii remain straight

Change in axial length, second-order
strain effect

Change in radius, second-order
strain effect

Material is transversely isotropic

Nadai’s method
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Wu’s solution for large torsion adding axial
elongation and radius change of cylinder:
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|Torsion of Thin Wall Tubes
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| Tube_2 Experiment
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‘Torsion of Specimen Solid_1
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Deformation Images

Deformation images of specimen Solid Torsion — Stable large shear till failure

Stage 0, 0 degree Stage 211, 40 degree  Stage 371, 80 degree  Stage 532, 120 degree  Stage 850, 180 degree

(1) At Q=40°, inclined straight lines within the gage section indicated uniform deformation.

(2) Lines were kinked at upper part of the gage section at Q=80°, which denoted surface deformation
was not uniform and localization had occurred. The transition from uniform to localization was
gradual; it started approximately at Q=60°. I

(3) For further rotation, the deformation was evidently concentrated at the localized zone as shown in
Q=120° and 180° images.

(4) Finally, the specimen cracked within the localized zone and separated the cracked cross-section.

The system stroke showed a maximum 0.013 mm axial displacement. It corresponds to about
0.1% axial strain if all elongation is from the gage section. I



Shear Angle Estimation o]

Right Camera

Y=tana Y= 0.176 Y= 0.325




|Estimated Shear Stress-Strain Curve

Experimental Data Estimated 7 — 7 Curve, Nadai’s Method
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Shear Strain Measurement
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Experimental Setup with 3D-DIC

|. MTS Mini Bionix AT
Testing System

2. GOMARAMIS
System (3D DIC)

3. FLIR SC6000 Infrared
Camera

* Control parameter
Axial: Force
Torsion: Rotation

* Specimen with DIC pattern



|Shear Strain of Solid_3 Torsion Experiment

Video: Solid_3 ¢,,

Actual testing time: ~ 25 s
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‘ Solid_3 Shear Strain e,, Distributionat | m
Different Stages |
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(2) Due to large rotation the area utilized for DIC measurements, or the measurable area,
became smaller and smaller. Since a pair of cameras only covered a portion of the
cylinder surface, part of the DIC pattern gradually rotated out of the camera view; and
those speckles newly rotated into the view did not have a reference state.
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Solid_3 Shear Strain e,, Distribution
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Shear Strain e, from Incremental
DIC Analysis
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Deformation Gradient and Engineering

Shear Strain e,, . |
Deformation gradient tensor: N | iy
p k 0 1+e, 14 0 | |
F=]|0 q 0|= 0 1+e, 0
0 0 S 0 0 1'+'€Z //— —;7 ,,;
. Where R is the rotation tensor
F=RU ) :
U is the right stretch tensor
cos® sin6 0 pcosO psinf 0
R =|—=sin@ cos® 0| U=|psin@ ksind + qcosb 0]
0 0 1 0 0 S

Biot strain U is defined from the right stretch tensor as follows:

€x-B  €xy—B 0 = Biot strain is direct output from
0 0 e,_p = Deformation gradient can be

calculated from Biot strain.

D = eyy_p/sind = (ex_p+1)/cosb,

€xy-B

q=(1+ey_p— exy_ptand)cosd, tand =



Mapping Engineering Shear Strain e,

back to the Original Reference

Calculating shear strain from deformation tensor

i’ ki Oflpy k O
Fi=F/F; =10 ¢’ 0|0 g O
0 0 Si’ 0 0 St

Fi — Fi,F609 for 60 <1<120

Fi = Fi’Flz()a fOI' 1> 120.

Three “incremental” shear strain curves 0 -> 1
— 60, 60 ->61 —120and 120-> 121 — 183 are
based on three distinct references. After
transformation and composing, curve 0 -> 1-

183 1s the shear strain history of the specimen.
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| Shear Stress~ Shear Strain

Calculating Shear Stress

. ar + 3T
" am 2\ Ydw
The radius r is constant for circular cylinder
during torsion, s0 Y = r,w

a1 replaced by -
w — is replaced by yﬂ

B
oz \Vay

47 This derivative can be calculated
—— by differentiating the polynomial
fitting function of T-y curve

The engineering shear stress-strain curve of the
specimen is determined, shown on the right.

Three specimens exhibit consistent stress-strain

behavior.

Torque, N-m

Shear Stress 1, MPa

25

20/’f

15

10

—Experimental data

5
—Smoothed curve

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

. Shear Strain vy .
Torque — enginecring shear strain T—)/

curve of TOR RD 3

250
200 | e —————
150
100
—RD1

50 —RD2
RD3

o |
0.0 1.0 2.0 3.0 4.0
Shear Strainy

Shear stress vs shear strain for Al



21

Summary

A new solid bar torsion test with 3D-DIC is developed.

Several reference configurations need to be employed due to
large twist of the cylindrical specimen. Total strain is calculated
from incremental deformation data via repeated exploitation of the
multiplicative decomposition of the deformation gradient.

Shear strain of Al 6061-T6 is experimentally measured on the
order of 2—3. Localized zone starts to develop at 60% shear strain,
and most plastic deformation is developed in the localized zone.
Substantial and repeatable strains are achieved up to failure.

Surface stress evaluation is based on the results of Nadai and
Wu. Pure shear stress-strain curves of engineering materials
Al6061-T6 are obtained and are consistent among different
specimens.

Solid bar torsion provides stable shear deformation and uniform
shear stress on the surface of the gage section. Various
specimen size could be used depending on torque and DIC
capacities.



