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In-Pool Energy Removal System for Emergency
Operation (PERSEO) Facility Description
• Primary Side

• RPV (with vertical riser, steam separator, and dryer)
• Steam Line 1.0iloffl I Vacuum Breaker I

• Heat Exchanger
• Drain Line

• Secondary Side
• Overall Pool
• Steam Duct
• Injector nozzle
• Heat Exchanger Pool

OP Drain Line I

• Liquid Line

• Steam supplied by nearby power station
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Overview

• Goals
• Benchmark MELCOR
against PERSEO
experiment

• Report on the current status
of MELCOR modelling
capabilities relevant to
phenomena observed at
PERSEO facility

• Identify potential
improvements to heat
transfer and natural
circulation modelling
capabilities in MELCOR
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• Motivation

• PERSEO Model Description
• Nodalization
• Initial and boundary
conditions

• PERSEO Test 7 Part I
• Test description
• Results

• Summary

• Future Work
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Motivation
Laboratories

• Natural convection is essential to the safe operation of Gen 111+
and Gen IV reactor design components — including safety systems
• Small modular reactors (SMRs), GE ESBWR, Westinghouse
AP-600, Lead-cooled fast reactor (LFR)

• MELCOR does not currently treat natural convection explicitly

• Benchmark MELCOR V2.2 against the PERSEO facility
experiments (ENEA)
• Heat transfer in a full scale heat exchanger submerged in a
liquid pool, the coupling process between two pools connected
through a natural circulation circuit, and pool phenomena
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PERSEO Model Nodalization

Boiloff Vacuum Breaker

OP Drain Line Trigger Valve

Environment

Saturated Steam Source

Condensate Line Sink
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PERSFO Test I Description
Relevant Thermal Hydraulic

as•ects
Experiment
Time(s)

Experiment Quantity
MELCOR
TimaW

MELCOR
Quantitv

Triggering valve (F045)
opening and closure

10475 -
10608

-
10471 s -
10601 s -

Triggering valve (F045) re-
opening and re-closure

10621 -
10655

-
10622 s -
10649 s -

1.41 m 10649 s 1.41 m
Maximum level in the HX Pool
for the first filling step

10683

Small Heat removal from the
primary side

10600 -
11000

3.5 MW
10630 s -
11056 s

- 1.9 MW

Slow water consumption in the
HX Pool

11049
From 1.41 m to 1.4
m

Not
observed

Not
observed

Instabilities for steam
condensation in the lniector

10930 -
11290

Negative HXP
relative pressure

Not
observed

Not
observed

ITriggering valve (F045)
opening and closure

11039 -
11260

_ 11039 -
11264 s - 

Maximum level in the HX Pool 11050 3.4 m 11260 s 3.4 m

Maximum exchanged power
11260 -
11845

21.5 MW 11263 s 21 MW

HX Pool minimum level 14800 1.25 m 14784 s 1.13 m
OP average temperature 13000 around 55 °C 13000 $} q 59 C
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Test 7 Part I Description

Boiloff Vacuum Breaker 

OP Drain Line Trigger Valve

Environment
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Test 7 Part I Description

OP Drain Line I

Boiloff Vacuum Breaker

Trigger Valve

Environment
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Test 7 Part I Description

Boiloff Vacuum Breaker I

OP Drain Line I Trigger Valve

Environment
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Test 7 Part I: Primary Pressure
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Test 7 Part I: Primary Flow
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Test 7 Part I: Exchanged Power
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Test 7 Part I: Secondary Water Levels
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Test 7 Part I: Heat Exchanger Temperatures
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Test 7 Part I: Heat Exchanger Pool Temperatures
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Test 7 Part I: Overall Pool Temperatures
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Test 7 Part I: Secondary Pressures
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Summary

• Without tuning by the user, the MELCOR model underestimates
heat transfer through the heat exchanger tubes
• Identified modeling gaps include the absence of axial
conduction between heat structures modeling the heat
exchanger tubes and a subcooled pool boiling correlation

• To correct this underestimation the number of heat exchanger
tubes was increased from 120 to 180

• Key experimental results were reproduced with good agreement
after tuning by the user

• Difficulty replicating differential pressures through the nozzle, and
relative pressures in the heat exchanger pool remained even after
model tuning
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Summary

• MELCOR has no dedicated models to capture the behavior of the
injector component

• The injector is modeled as concentric cylinders of decreasing radii

• In the absence of such models, flow through the injector nozzle
and related pressures could not be captured accurately

• The nodalization scheme adopted for this analysis underlines the
importance of not defining artificial, non-physical natural circulation
loops in MELCOR, which uses the control volume approach to
capture "average" behaviors. It also recognized the possibility of
the existence of "floating pools" if axial control volumes are
improperly applied under boiling conditions.
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Future Work

• Leverage current MELCOR modelling developments to improve
the PERSEO benchmark case
• Axial conduction between heat structures

• Identify and test appropriate subcooled pool boiling correlation
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Underestimated Heat Transfer: 120 HX Tubes
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Heat Exchanger

Internal Heat Transfer
Area HX (m2)

12.571 (total)
6.155 (upper header)
47.012 (HX tubes)
6.155 (lower header)

External Heat Transfer
Area HX (m2)

15.507 (total)
7.610 (upper header)
51.710 (HX tubes)
7.610 (lower header)

HX heat structure axial
nodes number

1 (upper header)
18 (HX tubes)
1 (lower header)

HX heat structure radial
nodes number

4
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Heat Exchanger Pool and Wall Temperatures
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Overall Pool Temperatures
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MELCOR Model of the PERSEO Facility

Number of
hydraulic
volumes

Number of
junctions

Number of heat
structures

Overall Volume
(m3)

Vessel Not modeled
Steam Supply Line 1 1 0 0.32
Steam Line 6 6 0 1.4331
HX 20 20 22 1.83984
Condensate line 6 6 0 0.4947
HXP 3 3 3 26.55564
Steam duct 3 3 0 12.22198
Nozzle 1 1 4 0.41
OP 1 3 0 172.91

1'91 l'AR ENGINEERING
® COLLEGE OF NG TH UNWE ERS1TYOF UTAH

Sandia National Laboratories

Integrated
University Program

U.S. Department of Energy

Page 27
Al ri h 1 niv ri f hN 1 r En in rin Pr r m 1 www.n 1 r. h.



MELCOR "Tuning"

Parameter MELCOR
SC ID

Parameter
Value

Description

Atmosphere Natural
and Forced
Convection Ranges

4060 -1.0 Convection heat transfer to the atmosphere is
assumed to be given by the greater of the
values defined by the natural and forced
convection correlations.

Pool Natural and
Forced Convection
Ranges

4080 -1.0 Convection heat transfer to the pool is
assumed to be given by the greater of the
values defined by the natural and forced
convection correlations.

Pool Laminar and
Turbulent Natural
Convection Ranges

4082 -1.0 Natural convection heat transfer to the pool is
assumed to be given by the greater of the
values defined by the laminar and turbulent
natural convection correlations.

Pool Laminar and
Turbulent Forced
Convection Ranges

4085 -1.0 Forced convection heat transfer to the pool is
assumed to be given by the greater of the
values defined by the laminar and turbulent
forced convection correlations.
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MELCOR "Tuning"

Parameter MELCOR
SC ID

Parameter
Value

Description

Minimum Boiling
Heat Flux
Coefficient

4182 0.177 Minimum boiling heat flux coefficient (default = 0.09)

Pool Natural
Convection
Coefficient

4161 0.15 Pool natural convection heat transfer correlation
coefficient, C, for turbulent natural convection
external to a cylindrical surface. (default = 0.10)

Atmospheric
Natural
Convection
Coefficient

4111 0.15 Atmospheric natural convection heat transfer
correlation coefficient, C, for turbulent natural
convection external to a cylindrical surface. (default
= 0.10)

Heat exchanger
tube multiplier

- 180.0 To increase heat transfer along the heat exchanger
tubes, the number of heat exchanger was artificially
increased from 120 to 180.
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Test 7 Part I Initial Conditions

Parameter Initial Condition

Primary

Control volume pressure Approximated based on the available PERSEO data

Control volume state All primary side CVs filled with saturated steam

Flow between control volumes Assumed no flow

Secondary

Control volume temperature and
pressure

Approximated based on the available PERSEO data

Control volume state All primary side CVs filled with dry air

Control volume pool levels Approximated based on the available PERSEO data

Flow between control volumes Assumed no flow

Heat exchanger wall temperatures Approximated based on the available PERSEO data

Heat exchanger pool wall
temperatures

Assumed to be near 'Environment' CV temperature (25
°C)

Nozzle wall temperatures Assumed to be near overall pool water temperature
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Test 7 Part I Boundary Conditions
Parameter Boundary Condition

Primary
Steam Supply A time-specified control volume was used to represent primary-side steam

supply. Control volume pressure was defined by a control function to match
measured primary pressures (P-l001). The control volume was filled with
saturated steam.

Condensate
Line Sink

The condensate line sink was defined by a separate control volume with a
time-specified pressure defined to account for the change in measured water
level in the RPV.

Secondary
Environment Time-independent control volume (10000 m3) filled with dry air; P = 100 kPa,

T = 25 °C
OP Drain Line Closed for the duration of test 7 part l
Vacuum
Breaker

One-way valve that opens when pressure in steam duct drops below
atmospheric pressure in the environment

Triggering Valve
Operation

Due to the unavailability
control function was used
function used approximate
simulate valve operation
match the maximum heat
of triggering valve operation.

of data for the operation of the triggering valve, a
to define triggering valve operation. The control
flow rates (FPOOL) and valve opening times to

approximate valve operation; it was also tuned to
exchanger pool height reported during each period

n
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