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2 | MOTIVATION

O®  wa
N " Coupling Approaches
§ for Next Generation

N
\ A Architectures

* ESMs include multiple components for the ocean, ,
atmosphere, ice, etc. CE/\’:’SM

* Coupled problem is a complex multi-physics,
multiscale problem , p

Earth System Model Coupling

* Monolithic solutions of the coupled problem not

) . o : -'_ v Sea Ice
computationally feasible (MPAS-S1)

- Need stable and accurate methods for partitioned
solves

* Challenges:
* Non-conforming grids

Land Ice

* Independent discretizations (MALI)
* Flux conservation and property preservation
- Stability over long integration times
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3 I OCEAN-ATMOSPHERE COUPLING

 Consider partial differential equations for atmosphere and
ocean circulation with state variables velocity and
temperature

* Ocean-atmosphere fluxes are defined by a parameterization
of the surface layers: “bulk” formulation

» Coupling conditions

ou, ou, r
P 0z P 0z
1q 1,
paKa&— — poKoa— — Qnet on I
0z 0z

7 = poCr |[u]|Tu]  Qnet = R + paColl[u] | [T]

Lemarié, Blayo, Debreu (2015) Proc. Comp. Sci; M. Gross, et al. (2018) MWK

o) | P

Velocity and temperature
jump at interface

[u] =u, — u,
T] =T, — T,

on I
on I



4+ I OCEAN-ATMOSPHERE COUPLING

Typical coupling methods

o Synchronous coupling
« Exchange instantaneous boundary data at largest time step

* More frequent communication Qoce 1 PR/VRD VR VR W
- Can be unstable (a) synchronous
tifl i—1 tz i tif"l
y Qatm e > “ o - ~p time
o Asynchronous coupling | (Ul Ui | Fan(U) 1 0l
* Exchange time-averaged boundary data § ‘ |
- Long time intervals require fewer communications between gt Ol o Fosllrless Tl
models "

(b) asynchronous

* Ensures flux conservation Schematic of coupling approaches

from Gross et al. (2018)

Both methods can be shown to be equivalent to one step of a Schwartz algorithm

Lemarié, Blayo, Debreu (2015) Proc. Comp. Sci; M. Gross, et al. (2018) MWK



5 I OCEAN-ATMOSPHERE COUPLING

Recent work has investigated relationship between coupling schemes and solution
methods for the monolithic ocean-atmosphere system
- Lemarié, Blayo, Debreu (2015): Global-in-time Schwarz method

 Beljaars et al. (2017): Stable parametrized implicit flux coupling for
temperature diffusion equation in the context of ice-atmosphere models

- Pelletier, Lemarié, Blayo (2017): Coupling methods for time-dependent
Ekman boundary layer model

» Connors, Ganis (2011): Fluid-fluid interaction using a monolithic and a two-
way partitioned method.

« Connors, Howell, Layton (2012): Partitioned methods for fluid-fluid
interaction



6 I PARTITIONED METHOD FOR BULK INTERFACE CONDITIONS

Our approach:

 Consider a simplified scalar equation with
representative coupling conditions

» Starting from the monolithic system, develop
a non-iterative approach to approximate the
Neumann coupling condition

» Use a Lagrange multiplier to ensure flux
continuity at the interface

* Motivated by the Implicit Value Recovery
(IVR) approach applied to solid mechanics and
advection-diffusion problems

Peterson, Bochev, Kuberry, CAMWA 2018

Atmosphere/ocean tracer

: 0 0 oT,
T+ gy luaTa) = 5 Ka g,

oT, oT, I’
: 0 0 oT,
TO -= %(UOTO) = %KO (‘92




7 1 IMPLICIT VALUE RECOVERY

Semi-Discrete System
Index 2 DAE

Mixed Formulation Discretize

/@1 = V o Fl(gol) == f1 iIl Ql

F;-ny=—-)\on
5 g : 4 /901€S{LCH%1(Q1)\
Ga — V- Fy(p2) = fain Qy y 1
FQ'?’LQ:/\OH’}/ 902652 CHF2(QQ)
\_ pr=prony ) \)\EGZCH_”Q(W)/ \_

Gip, — Gapy =0

Mgy + GiA = fi(g;)

Myp, — Gy A = f3(py)

Mass matrix (M; (Ni k. Nit)o

Ykt =
Coupling matrix  (G;)ri = (Vi g, Vi)~
Force vector f; , = —(V N, , Fi)a + (Nik, fi)a

Peterson, Bochev, Kuberry, CAMWA 2018

—)

Conversion to
index 1 DAE

4 )

Mg, + GiA = fi(g)

M@, — G\ = fa(ip5)

Gipy — Gapy =0

J \ 4
Algebraic Form
a _ s )
M; O G{ @1 fi(p1)
0 My -G53 || @2 | = | B(e2)
| G1 -Gy 0 || A L 0 |
A 4

Defines A as an implicit function of states: can

solve for A4 and use as Neumann data

subdomain equations

Explicit time integration effectively decouples the

Inf-sup condition verified for mortar elements
No splitting error or stability issues



s I IMPLICIT VALUE RECOVERY

Semi-Discrete System
Index 2 DAE

Mixed Formulation Discretize

/@1 —V'F1(901) :f1 n Ql
Fi - ny=-Aonvy

G2 — V- Fa(p2) = fo in Qy
Fr -no=Aonvy

/901 c St c H%l(Ql)\

g € S5 C Hi, (Q)

Gip) — Gapy =0

Mgy + GiA = fi(g;)

Myp, — Gy A = f3(py)

—)

Conversion to
index 1 DAE
/

N

Mg, + GiA = fi(g)

M@, — G\ = fa(ip5)

Gipy — Gapy =0

\_ o1 = \AGGQCH_W(W)/ \_ ) \_ Y,
Algebraic Form
Mass matrix (M;)x = (Nik, Nii)a y B
| | M 0 6T (T[] [f J
Coupling matrix  (G;)ri = (Vi g, Vi)~ 01 M, —éQT $; - fig$3
Force vector f; , = —(V N, , Fi)a + (Nik, fi)a e 0 A 0
I - ' ' 4

Want to derive a similar scheme
for bulk conditions on interface:

Peterson, Bochev, Kuberry, CAMWA 2018

Fi-ny=—F) -ny =a(p; — 2)
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BULK IMPLICIT VALUE RECOVERY

Start with Monolithic Mixed-like Formulation obtained by introducing a new flux variable 4 and
adding the bulk condition as a third equation

N 8 _ OT .9 o _ oT B
Ta N aTa = 5, 1ig - I Qa TO P OTO — v 2 I Qo
i ox (taTa) 0z 0z - u ox (1oTo) 0z 0z =

0T,
aaaia:/\ on I’ ° 5, =—-)\ onTl
A=oll, —T, on I'
N\ e Y,
Discretize in Space: Seek {7, T \'} ¢ Sg,r(Qa) X S(f)L,F(QO) x G
O I
(Zarva), vo TV = (feda)og, + N o ~ (UGt a)og, Vo € Hi ()
( ¢> o~ Ao = (oo, + (Koa;; | aéi())og (1o 2L ,wo)m Vb, € HL()
\< a(To —Tp) A mrdS = 0 VMEH_W(F)/

\ Weak form of the additional bulk condition equation
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BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

p

M,T,+ G
M,T,—GIT\

\aGaTa —aG,T, — M\p)\

Mass matrix (M;)x = (Nik, Nii)a
Coupling matrix (G;)k = (Nik, Vi)T

Interface mass matrix (Z\/Zp)kl = (Vk, V)1



11 I BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

& M T + GT\ =Ff (T )\ Mass matrix (Mz)kl = (Ni’k,Ni,l)Q
M, T, GIXx =f,(T,) Coupling matrix (G )1 = (Nj i, 1)1
G Ty —aG, Ty — MprA =0 ) Interface mass matrix (M) = (vi, v1)r

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.



12 I BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

& M T + GT\ =Ff (T )\ Mass matrix (Mz)kl = (Ni’]{;,Ni,l)Q
M, T, GIXx =f,(T,) Coupling matrix (G )1 = (Nj i, 1)1
G, Ty —aG, Ty — MpA =0 ) Interface mass matrix (M) = (vi, v1)r

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.

Solution: Discretize in time, then solve the fully discrete problem for flux 4

/ n+1 n \
M, (BT 4 GTA  =£,(T7)
M, (T8 ) — GIA = 1£,(T})

_aGL T — aG Ty — MrA =0 .




13 I BULK IMPLICIT VALUE RECOVERY

Separate system into internal (/) and interface (I') degrees of freedom gi<T?) — Atfz‘(T?) — M; T}

" Marr 0 AGE P Murr 00 1 [ TR ] [ gar(T) ]
0 M,rr —-AGI! 0 M,r; T, g, (T7)
aG, —aolG, —Z\/Zp 0 0 A = 0
A 0 My 0 T, gq,1(T7)
0 M, T 0 0 Morr | | TZ}jl | 8o, 1(T7)

Solve for flux: with explicit time stepping only involves information from old time step!

e —1
M-
A= (AtGZAalca SR e G —F> (Ga A 8a(T%) — G AT 8,(T7))

o

where  g,(T}) = g;r(T}) — My rrM; ;;2i.1(T})
A =M;r — Mz‘,FIMiT[l]Mi,IF



14 | COUPLING ALGORITHM

1. Compute right-hand side terms

[gv;(T?) = Atf;(T7}) — MiTyﬂ

2. Estimate interface boundary condition

— —1
M
{ A= (At(;anlGa +AtGTATG, - —F> (GTA; g, (T — GZ’AolgO(T;}))}

«

3. Solve independently in each subdomain

M;r M;rr T.r | [ g'r G/
M; v M; g1 L1




15 I IMPLEMENTATION

* There is some flexibility in choosing the Lagrange multiplier
space

* For the original IVR formulation, we followed the mortar
method approach and chose either one of the interface
partitions

 Results in a formulation that satisfies the inf-sup condition
* We follow this approach in the bulk IVR method
* Expect to converge optimally, but not pass a patch test




16 | LINEAR SOLUTION

Non-matching grids

.01

0

K, =

VS
S
~
O ™M (D= O
N~ O S
cld bld b
> |0 O | I
— N = O
M|~ — N —
VS
<
O MO <A
= - | O
b bld b
> |oY © |00 =
—~ | A D
M [— — [~ D~
)5555
a2222
— — — —
Sl |l o
e ee e
o OO O
10 10 (O O
2NN S S
— — O O
Slen v |id> >
TS 2SS
o OO O
vﬂlu\./)\./)
19953
—“ N e
Ol TN T
-
]




SIMPLE MANUFACTURED SOLUTION

/ do exp(foz) sin(nmz) exp(wi)

= d, exp(Bq2) sin(nmx) exp(wt)
60 =2 5a =1
do — 5 Cla — 1
K, = 0.001 K, =0.01
KO/BOCZO
o =

da_do
\ Uy = Uy = 1

Note: developed for testing method convergence and not intended to be physically realistic example.




18 I SIMPLE MANUFACTURED SOLUTION CONVERGENCE

T, = d, exp(Boz) sin(nmx
Ty = dg exp(Baz) sin(nmx

exp(wt)
) exp(wt)

Matching grid solution

Mesh (€2,) Mesh (2,) | At L?(Q) H(Q)
16 X 8 16 X 8 1.89e-02 1.44e-00 4.86e01
32 X 16 32 X 16 9.43e-03  2.50e-01 2.38e01
64 X 32 64 X 32 4.69e-03 4.55e-02 1.19e01

128 x 64 128 x 64 | 1.83e-03 8.76e-03  5.92¢00
Rate - - 2.38 1.01




19 I SIMPLE MANUFACTURED SOLUTION CONVERGENCE

L?(€)) Error norm

Mesh (€2,) Mesh (,) | At BIVR()A,) BIVR(\,)
16 X & 12 X6 1.33e-02  2.09e-00 2.09e-00
32 x 16 24 x 12 6.67e-03  3.40e-01 3.40e-01
64 x 32 48 x 24 3.32e-03  6.18e-02 6.18e-02

128 x 64 96 x 48 1.66¢-03  1.30e-02 1.30e-02
Rate - - 2295 2.25
H'(Q) Error norm

Mesh (2,) Mesh (2,) | At BIVR(A,) BIVR(\,)
16 x 8 12 x 6 1.33e-02  5.66e01 5.66e01
32 x 16 24 x 12 6.67e-03 2.78e01 2.78e01
64 x 32 48 x 24 3.32e-03 1.37e01 1.37e01

128 x 64 96 x 48 1.66e-03  6.84e00 6.84e00
Rate - - 1.01 1.01

0.8

0.6

04 r

02 r

0.2

-04 |

-0.6 r

-0.8

Non-matching grids




20 I CONCLUSIONS

Extended IVR to a Bulk-IVR partitioned scheme for a scalar
equation with bulk coupling conditions

Starts with a well-posed monolithic mixed-like formulation
Explicit time integration results in an IVR-like structure
This structure enables solving for the flux on the interface
Results in a non-iterative partitioned scheme
Proof-of-concept tested on simple manufactured solutions

Next steps

Extend Bulk-1VR to simplified coupled fluid equations

Extend to conjugate heat transfer with imperfect transmission
conditions

Investigate extensions to non-linear coupling conditions

Evaluate accuracy and stability of method for different spatial and
time discretizations
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