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2 MOTIVATION

Earth System Model Coupling

4 ESMs include multiple components for the ocean,
atmosphere, ice, etc.

Coupled problem is a complex multi-physics,
multiscale problem

Monolithic solutions of the coupled problem not
computationally feasible

Need stable and accurate methods for partitioned
solves

Challenges:
• Non-conforming grids
• Independent discretizations
• Flux conservation and property preservation
Stability over long integration times

■CANGA
Coupling Approaches
for Next Generation

Architectures
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Energy Exascale
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3 OCEAN-ATMOSPHERE COUPLING

Consider partial differential equations for atmosphere and
ocean circulation with state variables velocity and
temperature

Ocean-atmosphere fluxes are defined by a parameterization
of the surface layers: "bulk" formulation

Coupling conditions
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4 OCEAN-ATMOSPHERE COUPLING

Typical coupling methods

o Svnchronous coupling
Exchange instantaneous boundary data at largest time step

More frequent communication

Can be unstable

o Asynchronous coupling
Exchange time-averaged boundary data

Long time intervals require fewer communications between
models

Ensures flux conservation
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(b) asynchronous

Schematic of coupling approaches
from Gross et al. (2018)

Both methods can be shown to be equivalent to one step of a Schwartz algorithm

Lemarie, Blayo, Debreu (2015) Proc. Comp. Sci.; M. Gross, et al. (2018) MWR



5 OCEAN-ATMOSPHERE COUPLING

Recent work has investigated relationship between coupling schemes and solution
methods for the monolithic ocean-atmosphere system

Lemarié, Blayo, Debreu (2015): Global-in-time Schwarz method

Beljaars et al. (2017): Stable parametrized implicit flux coupling for
temperature diffusion equation in the context of ice-atmosphere models

Pelletier, Lemarié, Blayo (2017): Coupling methods for time-dependent
Ekman boundary layer model

Connors, Ganis (2011): Fluid-fluid interaction using a monolithic and a two-
way partitioned method.

Connors, Howell, Layton (2012): Partitioned methods for fluid-fluid
interaction



6 PARTITIONED METHOD FOR BULK INTERFACE CONDITIONS

Our approach:

Consider a simplified scalar equation with
representative coupling conditions

Starting from the monolithic system, develop
a non-iterative approach to approximate the
Neumann coupling condition

Use a Lagrange multiplier to ensure flux
continuity at the interface

Motivated by the Implicit Value Recovery
(IVR) approach applied to solid mechanics and
advection-diffusion problems

Atmosphere/ocean tracer
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7 IMPLICITVALUE RECOVERY

Mixed Formulation

— V • Fi(s01)

F1 • ni

(;-2 — V • F2 ((P2)
F2 • n2
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Discretize

CP1 E Si  C (C21)

CP2 E C (Q2)

A E G7h c H-1/2(-y)

Semi-Discrete System
Index 2 DAE

M1c.01 GTA = fi(coi;)

M2CO2 G;A = f2(CO2)

G1c01 — G2 c°2

Mass matrix (MOH = Ni,1)S2

Coupling matrix (Gi)kl = (Ni,k, vi)-y

Force vector fi,k = Fi)S2 (Ni,k) fi)C2

Peterson, Bochev, Kuberry, CAMWA 2018

Conversion to
index 1 DAE

M1CP1 GTA =

M2(;02 G2A = f2((i°2)

Gichi  G2c02 = 0

Algebraic Form

GT 1 [ 4)1 1 [ (Pi )

M2 —Gj A[ (i)2 = f2(q)2)
—G2 0
 J

• Defines A. as an implicit function of states: can
solve for A. and use as Neumann data

• Explicit time integration effectively decouples the
subdomain equations

• 1ff-sup condition verified for mortar elements
• No splitting error or stability issues



8 IMPLICIT VALUE RECOVERY

Mixed Formulation

— Fi(Sci) = fi in C21-.)
Fi • ni = —A on 7

(;32 V • F2 (P2) = f2 in Q2
F2 n2 = A on 7

(Pi = (P2 011 ‘-y

Discretize

CP1 E Sill C (C21)

CP2 E C (C22)

E c H-112 (7)

Semi-Discrete System
Index 2 DAE

M1(3.01 + GTA = fi(c01))

M2CO2 G;A = f242)

Gicol — G2c02 —

Mass matrix (Mi)kl = (Ni,k,

Coupling matrix (Gi)kl = (Ni,k, 111)-y

Force vector fi,k = Fi)c2 (Ni,k) f2)C2

Conversion to
index 1 DAE

M1CP1 GTA = f1((do1)

M2(;02 G2A = f2 42)

2c°2 = °

Algebraic Form
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Want to derive a similar scheme
. F1 • n1 = —F2 • n2for bulk conditions on interface: a(cal — co2)

Peterson, Bochev, Kuberry, CAMWA 2018



9 I BULK IMPLICIT VALUE RECOVERY

Start with Monolithic Mixed-like Formulation obtained by introducing a new flux variable A. and
adding the bulk condition as a third equation
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Weak form of the additional bulk condition equation



10 BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

Maria + GTa À = fa(Ta)

Mot — GT0 À = 110(110)
aGaT, — aGorro — MFA = 0

Mass matrix

Coupling matrix

Interface mass matrix

(Mi)kl - (Ni,k,Ni,l)S2

(Gi)kl = (Ni,k, vl)r

(114-1')kl - (vk, vl)F



11 BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

Maria + GTa, À = fa(Ta)

Mot — Go À = 110(110)
a Gal', — aG or r 0 — MFA = 0

Mass matrix

Coupling matrix

Interface mass matrix

(Mi)ki — (Ni,k, Ni,1)Q

(Gi)kl = (Ni,k, vi)r

(Mr)kl = (vk, vl)r

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.



1 2 BULK IMPLICIT VALUE RECOVERY

Semi-discrete System

Maria + GTa À = fa (Ta)

Moto — G707À = 110 (110)
a GaTa — aG orr 0 — MFA = 0

Mass matrix

Coupling matrix

Interface mass matrix

(Mi)ki — (Ni,k, Ni,1)Q

(Gi)kl = (Ni,k, vi)r

(Mr)kl = (vk, vl)r

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.

Solution: Discretize in time, then solve the fully discrete problem for flux A.

r
iv/ a   + GTt À = fa (TD
14- ►rit 

At 
,/,-F1 —T7 

Mo rr(n) +Al t riic') GT0 À = fo (IT))

cvG arr7,1,±1 — aGorIT,±1 — XiFA = 0



13 BULK IMPLICIT VALUE RECOVERY

Separate system into internal (I) and interface (F) degrees of freedom

- Ma,FF

0

a Ga

0 AtG -,1

M 0 ,FF — AtG70'

-—aG 0 —114

0

0 Mo,F I

0 0

FI

Ma , IF

0

o o

Mo,IF

a,I I 0

0 0 Mo, I I _

gi(T7) = Atfi(TN — MiT7

Solve for flux: with explicit time stepping only involves information from old time step!

A = OtGa A_,,1Gct + AtGTo /Jc1G0 — (Ga AVia(Tr,',) — Go AVA0(Tn)

 }

where gi(rii) = gi,F(TN - mi,FimiJigiArrii)

lAi = Mi,r — Mi,r MiTi_r i MZ,Ir



14 COUPLING ALGORITHM

Compute right-hand side terms

[gi(Trii) = Atf,,,(Ti) - /14;37

2. Estimate interface boundary condition

r _,- 7  -1

À = (AtGT,,A;1Ga + AtGT„ A;1G, Ivir  (GT„ Aa lka(Ta) - GoT/4,71k,(Tno ))
a

.}

Solve independently in each subdomain
,
[ Mi,r Mi,rir
[ Mi,Ir Mi,ri [ ] [ Kri + GTA P

K1 _I 



1 5 IMPLEMENTATION

There is some flexibility in choosing the Lagrange multiplier
space

For the original IVR formulation, we followed the mortar
method approach and chose either one of the interface
partitions

Results in a formulation that satisfies the inf-sup condition

We follow this approach in the bulk IVR method

Expect to converge optimally, but not pass a patch test

À1

A2

1



16 LINEAR SOLUTION

1-1„ x-Fy-F2
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0.03125 0.03125
0.03125 0.03125
0.05000 0.03125
0.05000 0.03125

BIVR 00)
1.23e-15
1.26e-13
7.18e-06
7.77e-04

BIVR Ai)
1.23e-15
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2.14e-07
1.64e-05
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17 SIMPLE MANUFACTURED SOLUTION

2 0

-20
1

0.5

y
-0.5

x

1

-70 = do exp(,30z) sin(n7rx) exp(w

Ta = da expPaz) sin(rvirx) exp(wt)

,30 = 2

o —

K0 = 0.001

a

i3a = 1
a —

Ka = 0.01

K0130do 
da do

uo = ua = 1

Note: developed for testing method convergence and not intended to be physically realistic example.



18 SIMPLE MANUFACTURED SOLUTION CONVERGENCE
Matching grid solution

To = do exp(130z) sin(fro-rx) exp(wt)

Ta = da expPaz) sin(frorx) exp(wt)

Mesh (C20)
16 x 8
32 x 16
64 x 32
128 x 64

Mesh (Qa)
16 x 8
32 x 16
64 x 32
128 x 64

At L2(Q) Hi (c2)

1.89e-02 1.44e-00 4.86e01
9.43e-03
4.69e-03
1.83e-03

2.50e-01
4.55e-02
8.76e-03

2.38e01
1.19e01
5.92e00

Rate 2.38 1.01



1 9 SIMPLE MANUFACTURED SOLUTION CONVERGENCE

L2 (Q) Error norm

Mesh (CL) Mesh (SL) At BIVR(A0) BIVR(Aa)

16 x 8 12 x 6 1.33e-02 2.09e-00 2.09e-00
32 x 16 24 x 12 6.67e-03 3.40e-01 3.40e-01
64 x 32 48 x 24 3.32e-03 6.18e-02 6.18e-02
128 x 64 96 x 48 1.66e-03 1.30e-02 1.30e-02

Rate 2.25 2.25

H1 (Q) Error norm

esh (R,) Mesh (CL) At BIVR(A0) BIVR(Aa)
16 x 8 12 x 6 1.33e-02 5.66e01 5.66e01
32 x 16 24 x 12 6.67e-03 2.78e01 2.78e01
64 x 32 48 x 24 3.32e-03 1.37e01 1.37e01
128 x 64 96 x 48 1.66e-03 6.84e00 6.84e00
Rate 1.01 1.01

0.8

0.6

0.4

0.2

>, 0

-0.2

-0.4

-0.6

-0.8

-1

Non-matching grids
Mesh

0 0 5 1 1 5 2

x

Solution



20 CONCLUSIONS

Extended IVR to a Bulk-IVR partitioned scheme for a scalar
equation with bulk coupling conditions

Starts with a well-posed monolithic mixed-like formulation

Explicit time integration results in an IVR-like structure

This structure enables solving for the flux on the interface

Results in a non-iterative partitioned scheme

Proof-of-concept tested on simple manufactured solutions

Next steps

Extend Bulk-IVR to simplified coupled fluid equations

Extend to conjugate heat transfer with imperfect transmission
conditions

Investigate extensions to non-linear coupling conditions

Evaluate accuracy and stability of method for different spatial and
time discretizations
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