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3 Compressive Classification

Optical System images Compressed images Classification
Algorithm

• Optical system and algorithmic classification design process is linear, one-
directional

• Current ML and DL methods for target classification typically rely upon algorithms
applied to data measured by traditional imagers

• This design paradigm fails to enable the ML and DL algorithms to influence the
sensing device itself, and treats the optimization of the sensor and algorithm as
separate sequential elements.

Can we create a holistic design of computational imaging
systems optimized for specific classification tasks?



Task-Specific Sensing

Task-Specific Compressed Images Classification
Optical System Algorithm
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Design. . O.Piii'lzed for

classification task

• Non-traditional optical system designed for specific target classification

• Inexpensive to manufacture

• Reduced storage and bandwidth requirements

• SWaP

I How do we use ML and optimization to determine
optimal representations for compressive classification

that can be physically realized in hardware?



5 Conceptual Approach
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Identify optimal compression matrix
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Create an imaging device that maps
object space to image space based on
the optimized compression matrix
determined by algorithmic approach
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I6 Previous Approaches

Algorithmic — Neural Network Hardware — Refractive Prism Array
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7 I Practical Implementation Difficulties

• Difficulty 1 - Every non-zero element within the compression matrix must be
realized by a prism and filter pair.

• Solution 1 - Enforce sparsity constraint on compression matrix.

• Difficulty 2 - Positive and negative values requires dual optical paths.

• Solution 2 — Enforce non-negative constraint on compression matrix

• Difficulty 3 - Wide variety of values within an optimized compression matrix
require a set of custom designed filters for each prism component in an array.

Solution 3 - Restrict values of compression matrix to a set of predefined discrete
transmission values.

iSolution 3 requires an algorithmic approach other tha
the neural network approach.

•



8 I Approaches Considered
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• Gradient-based methods

• Surrogate methods

• Bayesian optimization using Gaussian processes

• Mode pursuing sampling

• Heuristic methods

• Grid search

• Genetic algorithms



I9 Genetic Algorithm Approach
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io Simulation Results: Genetic Algorithm Performance
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I Simulation Results:Varying precision of compression matrix
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12 Simulation Results: ideal versus simulated hardware
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1 3 Simulation Results: ideal versus simulated hardware

k=1

k=4

k=2

k=5

e
•

•

k=3

.

k=6

k=1

k=4

k=7 k=8 k=9 k=7

..

k=2

k=5

14:

k=3

HI

k=6

k=8 k=9

(a) Ideal binary compression matrix (b) Simulated binary compression matrix



14  Future Work

• Algorithms

• New binning schemes — ex. equally weighted bins

• Additional investigation into optimization algorithms

• Extensions to reconstruction and object detection

• Hardware

• Device prototyping and manufacturing

• Alternative device design — ex. diffractive arrays, waveguides


