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3 I Compressive Classification

Optical System Images Comepressed Images Classification
Algorithm

* Optical system and algorithmic classification design process is linear, one-
directional

* Current ML and DL methods for target classification typically rely upon algorithms
applied to data measured by traditional imagers

* This design paradigm fails to enable the ML and DL algorithms to influence the
sensing device itself, and treats the optimization of the sensor and algorithm as
separate sequential elements.

Can we create a holistic design of computational imaging

systems optimized for specific classification tasks?




Task-Specific Sensing

Task-Specific Compressed Images Classification

Optical System Algorithm
v v

Design optimized for
classification task

* Non-traditional optical system designed for specific target classification
* Inexpensive to manufacture

* Reduced storage and bandwidth requirements

* SWaP

How do we use ML and optimization to determine

optimal representations for compressive classification
that can be physically realized in hardware!




s | Conceptual Approach
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Hardware

Create an imaging device that maps
object space to image space based on
the optimized compression matrix
determined by algorithmic approach
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Previous Approaches

Algorithmic — Neural Network
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Practical Implementation Difficulties

* Difficulty 1 - Every non-zero element within the compression matrix must be
realized by a prism and filter pair.

* Solution 1 - Enforce sparsity constraint on compression matrix.

* Difficulty 2 - Positive and negative values requires dual optical paths.

* Solution 2 — Enforce non-negative constraint on compression matrix

* Difficulty 3 - Wide variety of values within an optimized compression matrix
require a set of custom designed filters for each prism component in an array.

* Solution 3 - Restrict values of compression matrix to a set of predefined discrete
transmission values.

Solution 3 requires an algorithmic approach other than

the neural network approach.




Approaches Considered

maxzz «logp_6(c|Ax) Optimization problem is high-dimensional,

XEX ceC

expensive, and black-box (HEB)

* Gradient-based methods

* Surrogate methods
* Bayesian optimization using Gaussian processes

* Mode pursuing sampling

* Heuristic methods
* Grid search

* Genetic algorithms




s I Genetic Algorithm Approach
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o I Simulation Results: Genetic Algorithm Performance
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(2) Binary compression matrix (b) One digit precision compression matrix
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i1 I Simulation Results:Varying precision of compression matrix
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2 I Simulation Results: Ildeal versus simulated hardware
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3 I Simulation Results: ldeal versus simulated hardware

k=1 k=2 k=3 k= k=2
k=4 k=5 k:6
k:7 k:8 k:9
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Future Work

* Algorithms
* New binning schemes — ex. equally weighted bins
* Additional investigation into optimization algorithms

* Extensions to reconstruction and object detection

* Hardware
* Device prototyping and manufacturing

* Alternative device design — ex. diffractive arrays, waveguides




