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The Focus: Quantum Monte Carlo

These statistical methods, both real space and orbital space, solve the Schrodinger
equation directly, with only a few, well defined and potentially systematically reducible
errors. The methods are becoming able to cross-validate themselves.

Our initial materials: Mainly binary oxides — NiO, FeO, V02...
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Why are the approximations?

Monte Carlo Samples a probability distribution
Electrons are Fermions! (wavefunction is not >0 everywhere)

Use guiding (trial) wavefunction, IP, for importance sampling and for fixed node
approximation

4) is not the exact many-body wavefunction
Generally built using single particle orbitals calculated externally

Energy only depends on 11)=0 manifold

Global imperfections bias other observables
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7 A bird's eye view
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Checking in with a classic - Fe0

Classic example of strong correlation
(Mott Insulator)

Focus on impact of trial wavefunction
construction

Little sensitivity in weakly correlated materials
like Si02

Equilibrium Geometry, Gap, Moments

Choice of single particle orbitals had a
strong and uncontrolled effect

Lattice Distortion for Fe0 with
Slater-Jastrow Trial Wavefunctions
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Checking in with a Classic - Fe0

Classic example of strong correlation
(Mott Insulator)

Focus on impact of trial wavefunction
construction

Little sensitivity in weakly correlated materials
like Si02

Equilibrium Geometry, Gap, Moments

Choice of single particle orbitals had a
strong and uncontrolled effect

Simple Beyond-Single Slater-Jastrow
Trial Wavefunctions are not a panacea

Lattice Distortion for Fe0 with beyond
Slater-Jastrow Trial Wavefunctions
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10 I Look at a much more tractable system — D2 Hugoniot

Coupled electron-ion calculation of
Hugoniot

Significantly more compressible than
experiment

This includes non-controversial gas
gun experiments

With DFT either there is good
agreement or we switch functional to
try to better match experiment

With QMC we can try to improve the
approximation directly
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I First steps towards systematic improvability
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We can go further in a simpler system

Choose small representative snapshots
from high pressure liquid deuterium and
enumerate and variationally optimize a
large multideterminant expansion

Systematically improvable
multideterminant wavefunctions allow
errors to be controlled

Analyzed how errors in energy and
pressure affected previous results

responsible for significant portion of
discrepancy with experiment

Systematic improvement is more
important (and feasible) than
eliminating all errors

P/Po



12 I Next step is to be much smarter about selecting trial wavefunctions

Leverage recent resurgence in methods to
approximate CI by perturbatively selecting
determinants

For example try carbon diamond primitive cell
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13 How to make this generally practical?

Selective CI based methods are inherently exponential!

However, we can evaluate large expansions relatively
inexpensively in QMC

Leveraging generalization of Sherman-Morrison plus smart
tricks, we can evaluate several million determinants for QMC
while increasing the cost by only an order of magnitude or so

Still this only gets us to small-ish problems — maybe 10
electrons or so

A few more tricks can often increase this by a few factors
Smart choices of active space

Exploitation of symmetries

Truncation Nb dets Ener• Ha

CIPSI le-2 14 -10.5638 3

CIPSI le-3 4367 -10.5707 3

CIPSI le-4 76013 -10.5791 3

CIPSI le-5 992337 -10.5812 3

CIPSI le-6 1666608 -10.5817 3

CIPSI 1831452 -10.5817 7



14 How to make this generally practical?

Selective CI based methods are inherently exponential!

However, we can evaluate large expansions relatively
inexpensively in QMC

Leveraging generalization of Sherman-Morrison plus smart
tricks, we can evaluate several million determinants for QMC
while increasing the cost by only an order of magnitude or so

Still this only gets us to small-ish problems — maybe 10
electrons or so

A few more tricks can often increase this by a few factors
Smart choices of active space

Exploitation of symmetries

There is much more to be gained, consider for instance
the interplay between large expansions and the two body
Jastrow factor
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We are also exploring alterative QMC approaches
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Applying two different QMC
methods with different classes of I
approximation

Should agree if approximations are
made arbitrarily small

Learn from comparison about
strengths and weaknesses of
the methods and how to improve
them going forward

Note: QMCPACK now contains
a highly optimized AFQMC
implementation (qmcpack.org)
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16 Real vs Orbital Space Comparison so far

DMC
• Trivial explicit correlation

• Jastrow is almost free!
• Generally more accurate trial wavefunctions

• Led to sophisticated optimization techniques
• No basis set extrapolation. Works at CBS limit.
• Memory friendly
• Intuitive
• Relatively large community, approximations

relatively well understood

AFQMC
• Direct connection between ab-initio and model

Hamiltonians
• Flexible treatment of core electrons

• All-e, frozen-core, ECP, NCPP, etc.
• Spin-orbit coupling is easy to incorporate
• Typically smaller bias from phaseless

approximation
• Efficient/simple code

• GEMM, QR, Inverse

1
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17 Real vs Orbital Space Comparison so far

DMC
• Trivial explicit correlation

• Jastrow is almost free!
• Generally more accurate trial wavefunctions

• Led to sophisticated optimization techniques
• No basis set extrapolation. Works at CBS limit.
• Memory friendly
• Intuitive
• Relatively large community, approximations

relatively well understood

• Hard to simplify
• Pseudopotential approximations introduce

additional difficult to control dependence on trial
wavefunction

• Fixed-node error is larger
• Often relying on error cancellation

• Spin orbit as relatively more difficult
• Divergent potentials

• Observables like forces are noisier

AFQMC
• Direct connection between ab-initio and model

Hamiltonians
• Flexible treatment of core electrons

• All-e, frozen-core, ECP, NCPP, etc.
• Spin-orbit coupling is easy to incorporate
• Typically smaller bias from phaseless

approximation
• Efficient/simple code

• GEMM, QR, Inverse

• Smaller ab-initio community
• Basis set error

• Error cancellation is "transferred to the
basis"

• Requires 2-electron integrals
• M2-3 memory cost

• No direct algorithm
• Forces require xNatoms more memory
• Larger mixed estimator bias
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18 Pseudopotentials have also been identified as a major potential
source of error

For accurate calculations of functional materials (e.g. perovskites), explicitly correlated
methods like QMC need to be solving the correct Hamiltonian.

Effective Core Potentials (ECPs) are necessary in order to feasibly tackle large systems,
include relativity, etc.

We envision constructing a new generation of pseudopotentials that are highly accurate
and isospectral to the original many-body Hamiltonian:

—> Many-body construction. Constructed from relativistic many-body spectra leading to
the reproduction of nearly exact many-body properties.

—> Reliable and universal. Tested and validated in many-body framework. Usable in both
mean-field and many-body methods (in the spirit of the original all-electron H)



19 Many-body spectra and norm-conservation

Total objective function

02 = (00E2 + co1N2

CCSD(T) energy consistency:

E2 = Es(DE,Es:cp — AE‘1, ) EN2 , note that for elements we have worked on AVE agrees with
experiment to 0.03 eV

Norm-conservation:

N2 = v (ATECP — mAE)2 + (vECP — IME)2 i_ ( cECP — cilE)2 i_ ( ,ECP — ,I4E)2
La1V 11 1 "1 )  V v v l ) -I- V -̀'1 '1 ) -I- Vc1 cl )

Where N I is the norm inside a cutoff radius, VI, SI, El: value, derivative and eigenvalue of the
orbital



20 I What does this buy us?

Example Spectrum (Ni)
[Ar] 3d84s2 3F [Ar] 3d5 ss
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21 I Example of transferability
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22 These potentials (and others) are freely available

Pseudopotentiallibrary.org Pseudopotential Library

Includes these potentials as well as
others meant to be used in many-body
calculations

Coverage of the periodic table is
continually expanding

Would like to eventually include many
body testing results with potentials

A community website for pseudopotentialsleffective core potentials developed for high accuracy correlated many-body rnethods such as quantum Monte Carlo and

quantum chemistry.

Be

Mg

Sc TI V Cr Mn Fe Co NI Cu

B C N O

AI SI P S a

Carbon

ccECP eCEPP

ccECP from Chandler Bennett et al. eCEPP from J. R. Trail and R. J. Needs

Journal of Chemical Physics 147. Journal of Chemical Physics 146,

224106 (2017) 204107 (2017)

CEPP

CEPP from J. R. Trail and R. J. Needs

Journal of Chemical Physics 142,

064110 (2015)

C.cc-pVTZ.nwchem aug-cc-pV5Z-eCEPP.dat_C C.data

C.ccECP.xml C_cpp.casino C.awfn

C.ccECP.gamess C.data pp_gamess_C

C.ccECP C.awfn C_cpp.data

C.cc-pVQZ.gamess C_cpp.molpro

C.cc-pVTZ.gamess pp_eCEPP_C

C.cc-pV5Z.gamess aug-cc-pVTZ-eCEPP.dat_C

C.cc-pVDZ.gamess aug-cc-pVQZ-eCEPP.dat_C

C.cc-pVDZ.nwchem aug-cc-pVDZ-eCEPP.dat_C

C.cc-pVSZ.nwchem

C.ccECP.nwchem

C.cc-pVQZ.nwchem

Ar



23 Beyond the ground state

Work by Neuscamman and collaborators on
methods targeting excited state optimization in
Variational Monte Carlo

(II16) — rillj) Minimize 1/(co, IP) =
(WO) — R)2111j)

Allows a variational state specific optimization
algorithm that is size extensive and balanced
between various states

Shea and Neuscamman, JCTC 13, 6078 (2017)



I Targeting Excited States: Gaps

Variational optimization of multi-Slater
Jastrow trial wavefunction

Ground state optimizes all single particle-
hole excitations

Excited state includes most single and
double particle hole excitations

Actually for efficiency include only double
excitations from singles with relatively large
contribution
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i
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Submitted to PRL



25 I Use of VMC allows understanding of results

Investigate choice of single particle basis to feed into MBPT

Sum of squares of CI coefficients other than at valence band maximum and conduction
band minimum
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26 
Have made progress towards systematically improvable
calculations on oxides with QMC

We are expanding scope and improving robustness of QMC with multideterminant trial
wavefunctions

Also exploring orbital space vs continuous approaches

Have produced a series of accurate pseudopotentials designed for many-body
calculations

Are using these new capabilities to start adding to our understanding of materials and
also other computational methods


