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Motivation: Understanding Failure in AM Metal Structures and
2 The Third Sandia Fracture Challenge

The Third Sandia Fracture Challenge explores the experiments and model methods
required to predict ductile failure in AM metal parts.
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Most predictions did not
consider the AM porosity,
but yet did reasonably
well in predicting the
global response. This
implies that geometry,
not porosity, dominates

global behavior.



Motivation: Understanding Failure in AM Metal Structures and
3 The Third Sandia Fracture Challenge

Question: What is the effect of pre-existing voids on
deformation, damage, and failure in AM metallic
structures like the SFC3-geometry specimens?
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We will look at the global behavior and local crack initiation and growth relative to
pre-test void population and the evolution of void growth and crack evolution.



4 Experimental Approach: Interrupted Testing with Micro-CT
MTS 100-kN load frame with custom AM
grips and Correlated Solutions Stereo DIC

system (VIC3D)
Tested 6 "Build B" specimens
to failure to see overlap with
original "Build N' specimens

Interrupted test intervals for
six specimens:

11 — To middle of hardening

12 — Peak load

13 — Visible crack

14 - Failure

All interrupted test specimens
had the same failure mode as
tests to complete failure

Hencky Tensile
Strain Fields for 628

Subset Size (pix) 41

Step Size (pix) 8

Strain Window (pix) 9

Virtual Strain Gage (pix) 65

Virtual Strain Gage (inm) 0.517
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5 Micro-CT and Void Analysis Methods

• X-Ray Worx 225kV tubehead with a Varian
cesium iodide 2520DX detector using North Star
Imaging software

• Voxel resolution of 6.2+/-0.6 pm

• 16-bit tiff images reconstructed with Volume
Graphics 3.2 Max software

• Image processing in FIJI and MATLAB

• Void analysis performed using IDL software with
a requirement of at least 8-connected voxels to
count as a void with a minimum Equivalent
Spherical Diameter (ESD) of 13-9-16.9 [tm
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6 Mechanical Response

SFC3-Geometry specimens from "Build B" behaved similarly to those from "Build A",
so analysis of "Build B" specimens is assumed represent that of all SFC3 specimens.

Global measures considered:

• Peak load

• Displacement at peak load

• Displacement at failure

• Maximum unloading rate

All measures for monotonic and
interrupted "Build B" specimens were
similar to that of the monotonic
"Build A" specimens.
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7 Influence of Aggregate Void Metrics on Mechanical Response

Original Hypothesis:
Metrics of aggregate pre-test void population will correspond to mechanical behavior

Finding:
Metrics of pre-test void population do not strongly correspond to variations seen in

mechanical performance

Example: Displacement to Failure Versus Void Volume Over Different Regions
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8 Influence ofVoid Presence on Fracture

Specimen B10

Region 4

Region 3

37)-zy

oDuctile dimples

o Intersected voids



9 Influence ofVoid Presence on Fracture

Specimen B10 Region 3
Fracture Initiation

Fracture Deviation

• t
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Dimples

500 pm

oDuctile dimples

oIntersected voids

o Fracture deviation

oDifferent crack initiation
locations (Surface defect
or geometric intersection
point)
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10 Void Evolution Under Increasing Plastic Strain
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• All voids grew regardless of their involvement with the fracture surface.

• New voids (or voids too small to be resolved in pre-test scan) such as void 6 appeared due to
deformation and grew larger than many voids observed in pre-test.

• The fracture surface did not intersect some of the largest pre-test voids in this region (see green).

• During 14, the crack deviated from the plane of voids 1-3 down to voids 4-6 (or from void 4-6 up to voids
1-3), avoiding the large green voids nearby.



11 Influence of Local Porosity on Fracture Initiation

Local porosity can change the fracture initiation location and timing.

• Surface Defect: Depressions with depths >50 pm
• Surface Roughness: Smooth depressions with depths between 11-33 pm

Loading Interval of Fracture Initiation
Specimen Region 1 Region 2 Region 3 Region 4

B10 1* 2 1 2

B11 2 2 1 1*

B15 2 3 2 1*

B29 1* 1 3 2

B30 1* 2 3 3

B33 1* 1 2 2

* denotes fracture initiation at a surface defect
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12 Influence of Local Porosity on Fracture Growth

TD

Cracks that initiated at a surface defect tend to grow faster than those that initiated
at the high-stress intersection point.
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Unloaded Crack Volume After Each Interval for Each Region
Versus Unloaded Gage Displacement
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Despite variation in crack volume evolution between regions, agglomerate volume
evolution does not greatly vary between specimens, much like mechanical response.
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13 Future Work

Goal:
Deconvolve influence of several variables including void size, void location, void

population, surface roughness, and geometric features on overall part performance.

Various SFC3 Cases to Experimentally Study:

• Case 1: AM-built structure with only the
through-hole and angled channel features;

• Case 2: AM-built tensile bar with surface
roughness removed and the through-hole and
angled channel features machined into the part;

• Case 3: a wrought-metal tensile bar with the
through-hole and angled channel features
machined into the part;

• Case 4: Case 1 that has undergone Hot Isostatic
Pressing (HIP); and

• Case 5: Case 2 that has undergone HIP.

Additional Cases:

• Different geometric feature sizes relative to void
sizes;

• Geometries with only one or two feature; and

• Many more!
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14  Conclusions

Geometry Dominates Global Behavior in SFC3
Specimens:

Metrics of the pre-existing void population do not correlate with
the global mechanical behavior of the SFC3 specimens, but
rather the large stress concentrations from the geometry

overwhelmingly dominate the global behavior.

Voids Influence Local Crack Initiation and Growth:
Voids and surface defects influence local crack initiation and
growth by introducing variation in crack initiation site in some
cases and deviation from initial crack path to intersect voids.

Open Question: When Do Voids or Geometry Dominate?
Future work is required to deconvolve influence of several
variables including void size, void location, void population,
surface roughness, and geometric features on overall part

performance.
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15 Questions

More details will be available in the summer in a special volume of the
International Journal of Fracture.

S.L.B. Kramer, et.al., "The third Sandia Fracture Challenge:
predictions of ductile fracture in additively manufactured metal" (DOI:
10.1007/s10704-019-00361-1), (in press).

S.L.B. Kramer, et.al., "Evolution of Damage and Failure in an Additively
Manufactured 316L SS Structure: Experimental Reinvestigation of the Third
Sandia Fracture Challenge" (DOI: 10.1007/s10704-019-00357-x), Published
Online March 2019.



16 Backups



17 Global Measure of Mechanical Response

Specimen Test Type

Peak Load

(kN)

Disp.

At Peak

Load

(mm)

Disp.

At

Failure

(mm)

Maximum Instantaneous Unload Rate

Max.

Unload

Rate

(kN/s)

Unload

Slope

(kN/mm

Disp.

(mm)

Load

(kN)

B03 Monotonic 8.201 0.647 1.441 -6.0 -21.5 1.064 5.641

B12 Monotonic 8.186 0.597 1.402 -13.1 -13.1 1.155 3.222

B19 Monotonic 8.195 0.590 1.574 -3.3 -20.0 1.048 5.061

B20 Monotonic 8.184 0.782 1.446 -24.5 -17.5 1.086 6.211

B23 Monotonic 8.190 0.653 1.486 -2.8 -20.4 1.209 2.574

B28 Monotonic 8.240 0.683 1.505 -7.3 -20.2 1.072 5.930

B10 Interrupted 8.213 0.621 1.478 -1.1 -17.1 1.100 4.251

B11 Interrupted 8.090 0.575 1.424 -7.8 -2133.2 0.901 4.201

B15 Interrupted 8.156 0.684 1.354 -5.7 -5.6 1.092 4.011

B29 Interrupted 8.140 0.705 1.498 -3.8 -18.3 1.141 4.172

B30 Interrupted 8.078 0.591 1.498 -0.7 -18.5 1.281 0.890

B33 Interrupted 8.077 0.581 1.445 -4.4 -17.9 1.191 1.581

•



18 Void Evolution Under Increasing Plastic Strain
Height (pm)

Specimen B33
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Void Evolution:
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o Voids grew regardless of their involvement with the fracture surface.

o New voids appeared and grew larger than many voids observed in pre-test.

• Cracks initiated at surface defects.

O Some voids are consumed during the fracture that occurs on multiple fronts, not just from one general area.

• The crack does not greatly deviate from the nominal crack path, even though it initiated away from the high-
stress intersection point.

Fracture Initiation _



19  Predictions: Question 3
Report the force vs. gage displacement D for the test.

21 Predictions and Bounds with Exp. Average and Bounds 21 Nominal Predictions with Exp. Average and Bounds
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• More teams under-predicted the failure displacement than over-predicted.
• There were only two teams whose nominal prediction fell within the bounds of the
experimental data (Teams B and Q).

• The uncertainty bounds on predictions ranged from too small to too large, with most unlike
the experiments where there was little initial variability with moderate variability after
peak load.



1 9 SFC3: Porosity Distribution , X
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• 45° orientation of defects with respect to sample surface

• 90° orientation of defect trails to one another

• Approximately 1 mm spacing between parallel defect trails
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