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2 I Background

Fe-Co-2V alloys have the highest available magnetic saturation of any commercial soft alloys

° Saturation is the state reached when an increase in applied magnetic field cannot increase magnetization of
the material further

Fe-Co-2V is used in solenoids, electric motors, and other components

Common commercial alloys:
> Permendur 2V — (Manufactured by Metalwerks, Inc.)
> Hiperco 50A (Hiperco is a tradename of Carpenter Technologies Inc.)

Example:
o Aircraft Auxiliary Power Unit (APU) and Ram Air Turbine (RAT) generators use Fe-Co-2V alloy

> Generate (RAT) and supply (APU) power in emergency situations (engine failure) for cockpit
instrumentation and flight controls (power 1s typically generated in main fuel-burning engines)

> Fe-Co-2V alloy maximizes power generation for a given weight
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Understanding mechanical behavior is critical for design and simulation of different scenarios




31 Background

Linear hardening

Discontinuous yielding:
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Only two quasi-static studies have been done

*  Special small grain sizes only

* High temperature only

* Rate effect seen even in quasi-static regime

How would a commercial alloy perform under abnormal
mechanical conditions?

¢ Drop/impact loading rates?

* Cold temperatures?

This information is needed to make and improve
modeling and simulation of applications

Weihs, T.P., 2003, Temperature dependent mechanical properties of ultra-fine grained FeCo-2V,
Acta Materialia, 51:4083-4093.




4 | Experimental Matrix

Strategy: Use Kolsky tension bar and Drop-Hopkinson bar to measure
tensile stress-strain behavior over -100 to 100°C

Nominal Strain Rate (s'') Temperature (°C) Apparatus

40 20 (ambient) Drop-Hopkinson Bar
65 -100 Kolsky Tension Bar
110 20 (ambient) Drop-Hopkinson Bar
230 -100 Kolsky Tension Bar
230 -50 Kolsky Tension Bar
230 20 (ambient) Kolsky Tension Bar

230 100 Kolsky Tension Bar




5 1 Kolsky Tension Bar Experimental Setup
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6 | Drop-Hopkinson Bar Experimental Setup
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71 Strain Correction Method

Hopkinson Bar

* For both Kolsky and DH Bar, strain is overestimated due
I to the measurement location

“g

Specimen

* Strain correction is needed only to include the straight part
of the specimen

* Shoulder deforms plastically due to hardening in the
material
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Three-region correction method will be presented by Bo Song
Uses laser displacements, force output, and specimen geometry
to correct the measured strain
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s | Experimental Output
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9 I Stress-Strain Behavior
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10

Engineering Stress (MPa)

Engineering Stress (MPa)

Stress-Strain Behavior
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11 I Strain Rate Effects
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12 1 Temperature Effects
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13

Temperature Effects

Failure Strain
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14 I Fracture Morphology

* No necking is evident

* Brittle fracture

* Specimens were round after
tailure (in-plane isotropic)

* Typical for all temperatures
and rates
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15 I Conclusions

* Fe-Co-2V characterized using Drop-Hopkinson bar and Kolsky over wide range of
temperatures and strain rates

* Stress-strain behavior had a linear elastic response followed by an upper and lower yield
before linearly hardening to failure

* The upper/lower yield behavior decreased with decreasing strain rate

* Hardening rate was independent of strain rate or temperature (within the temperature range)
* Failure strain increased with increasing temperature

* TFailure mode was brittle for all rates and temperatures

* All this information can be applied to a rate and temperature dependent constitutive model
for this material




