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2 Background

Fe-Co-2V alloys have the highest available magnetic saturation of any commercial soft alloys

. Saturation is the state reached when an increase in applied magnetic field cannot increase magnetization of
the material further

Fe-Co-2V is used in solenoids, electric motors, and other components

Common commercial alloys:
O Permendur 2V — (Manufactured by Metalwerks, Inc.)

O Hiperco 50A (Hiperco is a tradename of Carpenter Technologies Inc.)

Example:

• Aircraft Auxiliary Power Unit (APU) and Ram Air Turbine (RAT) generators use Fe-Co-2V alloy

• Generate (RAT) and supply (APU) power in emergency situations (engine failure) for cockpit
instrumentation and flight controls (power is typically generated in main fuel-burning engines)

• Fe-Co-2V alloy maximizes power generation for a given weight

Understanding mechanical behavior is critical for design and simulation of different scenarios



3 Background

Discontinuous yielding:
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Only two quasi-static studies have been done

• Special small grain sizes only

• High temperature only

• Rate effect seen even in quasi-static regime

How would a commercial alloy perform under abnormal

mechanical conditions?
• Drop/impact loading rates?

• Cold temperatures?

This information is needed to make and improve

modeling and simulation of applications

Duckham, A., Zhang, D.Z., Liang, D., Luzin, V., Cammarata, R.C., Leheny, R.L., Chien, C.L., and
Weihs, T.P., 2003, Temperature dependent mechanical properties of ultra-fine grained FeCo-2V,
Acta Materialia, 51:4083-4093.



1 Experimental Matrix

Strategy: Use Kolsky tension bar and Drop-Hopkinson bar to measure

tensile stress-strain behavior over -100 to 100°C

1:1
Nominal Strain Rate (s-1) Temperature (°C) Apparatus

40 20 (ambient) Drop-Hopkinson Bar

65 -100 Kolsky Tension Bar

110 20 (ambient) Drop-Hopkinson Bar

230 -100 Kolsky Tension Bar

230 -50 Kolsky Tension Bar

230 20 (ambient) Kolsky Tension Bar

230 100 Kolsky Tension Bar

I
1
I



5 Kolsky Tension Bar Experimental Setup

Ambient temperatures:
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Strain Gages

6 Drop-Hopkinson Bar Experimental Setup
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7 Strain Correction Method
Hopkinson Bar—.

Specimen

2ro

L8

Laser Beam

• For both Kolsky and DH Bar, strain is overestimated due
to the measurement location

• Strain correction is needed only to include the straight part
of the specimen

• Shoulder deforms plastically due to hardening in the
material

• Three-region correction method will be presented by Bo Song
• Uses laser displacements, force output, and specimen geometry

to correct the measured strain
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8 I Experimental Output
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9 Stress-Strain Behavior
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10 Stress-Strain Behavior
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11 Strain Rate Effects
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12 Temperature Effects
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13 Temperature Effects
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14 Fracture Morphology

• No necking is evident
• Brittle fracture

• Specimens were round after

failure (in-plane isotropic)

• Typical for all temperatures

and rates



15 Conclusions

• Fe-Co-2V characterized using Drop-Hopkinson bar and Kolsky over wide range of

temperatures and strain rates

• Stress-strain behavior had a linear elastic response followed by an upper and lower yield

before linearly hardening to failure

• The upper/lower yield behavior decreased with decreasing strain rate

• Hardening rate was independent of strain rate or temperature (within the temperature range)

• Failure strain increased with increasing temperature

• Failure mode was brittle for all rates and temperatures

• All this information can be applied to a rate and temperature dependent constitutive model

for this material


